Skip to content

wiso/root_pandas

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

60 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

root_pandas

Build Status PyPI DOI

root_pandas is a convenience package built around the root_numpy library. It allows you to easily load and store pandas DataFrames using the columnar ROOT data format used in high energy physics.

It's modeled closely after the existing pandas API for reading and writing HDF5 files. This means that in many cases, it is possible to substitute the use of HDF5 with ROOT and vice versa.

On top of that, root_pandas offers several features that go beyond what pandas offers with read_hdf and to_hdf.

These include

  • Specifying multiple input filenames, in which case they are read as if they were one continuous file.
  • Selecting several columns at once using * globbing and {A,B} shell patterns.
  • Flattening source files containing arrays by storing one array element each in the DataFrame, duplicating any scalar variables.

Reading ROOT files

This is how you can read the contents of a ROOT file into a DataFrame:

from root_pandas import read_root

df = read_root('myfile.root')

If there are several ROOT trees in the input file, you have to specify the tree key:

df = read_root('myfile.root', 'mykey')

Specific columns can be selected like this:

df = read_root('myfile.root', columns=['variable1', 'variable2'])

You can also use * in the column names to read in any matching branch:

df = read_root('myfile.root', columns=['variable*'])

In addition, you can use shell brace patterns as in

df = read_root('myfile.root', columns=['variable{1,2}'])

You can also use * and {a,b} simultaneously, and several times per string.

Working with stored arrays can be a bit inconventient in pandas. root_pandas makes it easy to flatten your input data, providing you with a DataFrame containing only scalars:

df = read_root('myfile.root', columns=['arrayvariable', 'othervariable'], flatten=True)

Assuming the ROOT file contains the array [1, 2, 3] in the first arrayvariable column, flattening will expand this into three entries, where each contains one of the array elements. All other scalar entries are duplicated. The automatically created __array_index column also allows you to get the index that each array element had in its array before flattening.

There is also support for working with files that don't fit into memory: If the chunksize parameter is specified, read_root returns an iterator that yields DataFrames, each containing up to chunksize rows.

for df in read_root('bigfile.root', chunksize=100000):
    # process df here

You can also combine any of the above options at the same time.

Writing ROOT files

root_pandas patches the pandas DataFrame to have a to_root method that allows you to save it into a ROOT file:

df.to_root('out.root', key='mytree')

You can also call the to_root function and specify the DataFrame as the first argument:

to_root(df, 'out.root', key='mytree')

By default, to_root erases the existing contents of the file. Use mode='a' to append:

for df in read_root('bigfile.root', chunksize=100000):
    df.to_root('out.root', mode='a')

When doing this to stream data from one ROOT file into another, you shouldn't forget to os.remove the output file first, otherwise you will append more and more data to it on each run of your program.

About

A Python module for conveniently loading/saving ROOT files as pandas DataFrames

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 95.3%
  • Shell 4.7%