Skip to content

xeTaiz/torchio

 
 

Repository files navigation

TorchIO

DOI PyPI version Build Status

torchio is a Python package containing a set of tools to efficiently read, sample and write 3D medical images in deep learning applications written in PyTorch, including intensity and spatial transforms for data augmentation and preprocessing. Transforms include typical computer vision operations such as random affine transformations and also domain specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity or k-space motion artifacts.

This package has been greatly inspired by NiftyNet.

Credits

If you like this repository, please click on Star!

If you used this package for your research, please cite this repository using the information available on its Zenodo entry or use this BibTeX:

@software{perez_garcia_fernando_2020_3598622,
  author       = {PĂ©rez-GarcĂ­a, Fernando},
  title        = {{fepegar/torchio: TorchIO: Tools for loading,
                   augmenting and writing 3D medical images on
                   PyTorch}},
  month        = jan,
  year         = 2020,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.3598622},
  url          = {https://doi.org/10.5281/zenodo.3598622}
}

Index

Installation

This package is on the Python Package Index (PyPI). To install it, just run in a terminal the following command:

$ pip install torchio

Features

Data handling

ImagesDataset is a reader of medical images that directly inherits from torch.utils.Dataset. It can be used with a torch.utils.DataLoader for efficient reading and data augmentation.

It receives a list of subjects, where each subject is composed of a list of torchio.Image instances. The paths suffix must be .nii, .nii.gz or .nrrd.

import torchio

subject_a = [
    Image('t1', '~/Dropbox/MRI/t1.nrrd', torchio.INTENSITY),
    Image('label', '~/Dropbox/MRI/t1_seg.nii.gz', torchio.LABEL),
]
subject_b = [
    Image('t1', '/tmp/colin27_t1_tal_lin.nii.gz', torchio.INTENSITY),
    Image('t2', '/tmp/colin27_t2_tal_lin.nii', torchio.INTENSITY),
    Image('label', '/tmp/colin27_seg1.nii.gz', torchio.LABEL),
]
subjects_list = [subject_a, subject_b]
subjects_dataset = torchio.ImagesDataset(subjects_list)
subject_sample = subjects_dataset[0]

torchio includes grid, uniform and label patch samplers. There is also an aggregator used for dense predictions. For more information about patch-based training, see NiftyNet docs.

import torch
import torchio

CHANNELS_DIMENSION = 1
patch_overlap = 4
grid_sampler = torchio.inference.GridSampler(
    input_array,  # some NumPy array
    patch_size=128,
    patch_overlap=patch_overlap,
)
patch_loader = torch.utils.data.DataLoader(grid_sampler, batch_size=4)
aggregator = torchio.inference.GridAggregator(
    input_array,
    patch_overlap=patch_overlap,
)

with torch.no_grad():
    for patches_batch in patch_loader:
        input_tensor = patches_batch['image']
        locations = patches_batch['location']
        logits = model(input_tensor)  # some torch.nn.Module
        labels = logits.argmax(dim=CHANNELS_DIMENSION, keepdim=True)
        outputs = labels
        aggregator.add_batch(outputs, locations)

output_array = aggregator.output_array

A patches Queue (or buffer) can be used for randomized patch-based sampling during training. This interactive animation can be used to understand how the queue works.

import torch
import torchio

patches_queue = torchio.Queue(
    subjects_dataset=subjects_dataset,  # instance of torchio.ImagesDataset
    queue_length=300,
    samples_per_volume=10,
    patch_size=96,
    sampler_class=torchio.sampler.ImageSampler,
    num_workers=4,
    shuffle_subjects=True,
    shuffle_patches=True,
)
patches_loader = DataLoader(patches_queue, batch_size=4)

num_epochs = 20
for epoch_index in range(num_epochs):
    for patches_batch in patches_loader:
        logits = model(patches_batch)  # model is some torch.nn.Module

Transforms

The transforms package should remind users of torchvision.transforms. They take as input the samples generated by an ImagesDataset.

A transform can be quickly applied to an image file using the command-line tool torchio-transform:

$ torchio-transform input.nii.gz RandomMotion output.nii.gz --kwargs "proportion_to_augment=1 num_transforms=4"

Augmentation

Intensity

Magnetic resonance images suffer from motion artifacts when the subject moves during image acquisition. This transform follows Shaw et al., 2019 to simulate motion artifacts for data augmentation.

MRI k-space motion artifacts

MRI magnetic field inhomogeneity creates slow frequency intensity variations. This transform is very similar to the one in NiftyNet.

MRI bias field artifacts

Adds noise sampled from a normal distribution with mean 0 and standard deviation sampled from a uniform distribution in the range std_range. It is often used after ZNormalization, as the output of this transform has zero-mean.

Random Gaussian noise

Spatial

Random elastic deformation

Reverse the order of elements in an image along the given axes.

Preprocessing

Implementation of New variants of a method of MRI scale standardization adapted from NiftyNet.

Histogram standardization

This transform first extracts the values with intensity greater than the mean, which is an approximation of the foreground voxels. Then the foreground mean is subtracted from the image and it is divided by the foreground standard deviation.

Z-normalization

Rescale intensity values in an image to a certain range.

Resample images to a new voxel spacing using nibabel.

Pad images, like in torchvision.transforms.Pad.

Crop images passing 1, 3, or 6 integers, as in Pad.

This example shows the improvement in performance when multiple workers are used to load and preprocess the volumes using multiple workers.

import time
import multiprocessing as mp

from tqdm import trange

import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision.transforms import Compose

from torchio import ImagesDataset, Queue, DATA
from torchio.sampler import ImageSampler
from torchio.utils import create_dummy_dataset
from torchio.transforms import (
    ZNormalization,
    RandomNoise,
    RandomFlip,
    RandomAffine,
)


# Define training and patches sampling parameters
num_epochs = 4
patch_size = 128
queue_length = 400
samples_per_volume = 10
batch_size = 4

class Network(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv = nn.Conv3d(
            in_channels=1,
            out_channels=3,
            kernel_size=3,
        )
    def forward(self, x):
        return self.conv(x)

model = Network()

# Create a dummy dataset in the temporary directory, for this example
subjects_list = create_dummy_dataset(
    num_images=100,
    size_range=(193, 229),
    force=False,
)

# Each element of subjects_list is a dictionary:
# subject_images = [
#     torchio.Image('one_image', path_to_one_image, torchio.INTENSITY),
#     torchio.Image('another_image', path_to_another_image, torchio.INTENSITY),
#     torchio.Image('a_label', path_to_a_label, torchio.LABEL),
# ]

# Define transforms for data normalization and augmentation
transforms = (
    ZNormalization(),
    RandomNoise(std_range=(0, 0.25)),
    RandomAffine(scales=(0.9, 1.1), degrees=10),
    RandomFlip(axes=(0,)),
)
transform = Compose(transforms)
subjects_dataset = ImagesDataset(subjects_list, transform)


# Run a benchmark for different numbers of workers
workers = range(mp.cpu_count() + 1)
for num_workers in workers:
    print('Number of workers:', num_workers)

    # Define the dataset as a queue of patches
    queue_dataset = Queue(
        subjects_dataset,
        queue_length,
        samples_per_volume,
        patch_size,
        ImageSampler,
        num_workers=num_workers,
    )
    batch_loader = DataLoader(queue_dataset, batch_size=batch_size)

    start = time.time()
    for epoch_index in trange(num_epochs, leave=False):
        for batch in batch_loader:
            # The keys of batch have been defined in create_dummy_dataset()
            inputs = batch['one_modality'][DATA]
            targets = batch['segmentation'][DATA]
            logits = model(inputs)
    print('Time:', int(time.time() - start), 'seconds')
    print()

Output:

Number of workers: 0
Time: 394 seconds

Number of workers: 1
Time: 372 seconds

Number of workers: 2
Time: 278 seconds

Number of workers: 3
Time: 259 seconds

Number of workers: 4
Time: 242 seconds

Related projects

See also

About

Tools for loading, augmenting and writing 3D medical images on PyTorch.

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 97.3%
  • Makefile 2.7%