Beispiel #1
0
def get_model(feature_type='F'):

    # extract the files corresponding to each epochs
    model_path = os.path.join(args.test_dir, "model")

    # use original DPC weights
    model_filename = "k400_128_r18_dpc-rnn.pth.tar"
    model_file = os.path.join(model_path, model_filename)

    try:
        checkpoint = torch.load(model_file)
    except:
        print('model failed to load')
        return

    model = model_visualize(sample_size=args.img_dim,
                            seq_len=args.seq_len,
                            pred_steps=1,
                            network=args.net,
                            feature_type=feature_type,
                            distance_type=args.distance_type)
    model = model.to(cuda)
    model.eval()

    model = neq_load_customized(model, checkpoint['state_dict'])
    model = nn.DataParallel(model)
    return model
Beispiel #2
0
def main():

    global args
    args = parser.parse_args()
    os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)

    global cuda
    cuda = torch.device('cuda')

    # get validation data with label for plotting the embedding
    transform = transforms.Compose([
        # centercrop
        CenterCrop(size=224),
        RandomSizedCrop(consistent=True, size=224, p=0.0),
        Scale(size=(args.img_dim, args.img_dim)),
        ToTensor(),
        Normalize()
    ])

    data_loader = get_data(transform, 'test')

    if args.output == 'embedding':
        # write the embeddings to writer
        try:  # old version
            writer = SummaryWriter(log_dir=args.test_dir + 'embeddings')
        except:  # v1.7
            writer = SummaryWriter(logdir=args.test_dir + 'embeddings')

    elif args.output == 'neighbours':

        base_path = args.test_dir + 'neighbours'
        try:
            if not os.path.exists(base_path):
                os.mkdir(base_path)
        except OSError as error:
            print(error)

    # assuming that model is saved after every 10 epochs

    # extract the files corresponding to each epochs
    model_path = os.path.join(args.test_dir, "model")
    model_filename = "epoch" + str(args.epoch) + ".pth.tar"
    model_file = os.path.join(model_path, model_filename)
    # print(model_file)
    try:
        checkpoint = torch.load(model_file)
    except:
        return

    # print values corresponding to the keys

    if args.output == 'embedding':
        model = model_visualize(sample_size=args.img_dim,
                                seq_len=args.seq_len,
                                pred_steps=1,
                                network=args.net,
                                feature_type='Phi',
                                distance_type=args.distance_type)
    elif args.output == 'neighbours':
        model = model_visualize(sample_size=args.img_dim,
                                seq_len=args.seq_len,
                                pred_steps=1,
                                network=args.net,
                                feature_type='Phi',
                                distance_type=args.distance_type)
    model = model.to(cuda)
    model.eval()

    model = neq_load_customized(model, checkpoint['state_dict'])
    model = nn.DataParallel(model)

    input_embed_all = torch.Tensor()
    output_embed_all = torch.Tensor().to(cuda)
    target_embed_all = torch.LongTensor()
    if args.distance_type == 'uncertain':
        radius_embed_all = torch.Tensor().to(cuda)

    with torch.no_grad():
        for idx, (input_seq, target) in enumerate(data_loader):

            # get the middle frame of the middle sequence to represent with visualization
            input_embed = input_seq.permute(0, 2, 1, 3, 4, 5)[:, :, 2, 2, :, :]
            input_seq = input_seq.to(cuda)
            output = model(input_seq)

            # get a 256-dim embedding from F+G
            output_embed = output.squeeze()

            # consider only first 256 dimensions in case we use radii
            # Note that radii will not be displayed in the embeddings

            if args.distance_type == 'uncertain':
                output_embed = output_embed[:, :-1]
                # radius_embed = output_embed[:, -1].expand(1, -1)
                # print(radius_embed.shape)
            elif args.distance_type == 'certain':
                output_embed = output_embed

            # actionlabels for each video
            target_embed = target.squeeze()
            target_embed = target_embed.reshape(-1)

            # concatenate all pertaining to current batch
            input_embed_all = torch.cat((input_embed_all, input_embed), 0)
            output_embed_all = torch.cat((output_embed_all, output_embed), 0)
            target_embed_all = torch.cat((target_embed_all, target_embed), 0)
            # if args.distance_type == 'uncertain':
            # radius_embed_all = torch.cat(
            # (radius_embed_all, radius_embed), 1)
            # print("Here")

    if args.output == 'embedding':
        # store the embedding as tensorboard projection to visualize
        writer.add_embedding(
            output_embed_all,
            metadata=target_embed_all,
            # label_img=input_embed_all,
            global_step=i)
        print("Right here")
    elif args.output == 'neighbours':

        # store all the inputs, outputs and targets as a single file
        # output = output.squeeze()
        # output_embed = output[:, :-1, :, :]
        # radius = output[:, -1, :, :]
        # target = target.squeeze()

        # input_embed = input_seq.squeeze().detach().cpu()

        # print(input_embed.shape)

        # choose middle step and middle frame as representation
        # input_embed = input_embed[:, :, 2, :, :].squeeze()
        path = os.path.join(base_path, "%0.5d" % args.epoch)
        try:
            os.mkdir(path)
        except OSError as error:
            print(error)
        torch.save(input_embed_all, os.path.join(base_path, 'input_embed.pt'))
        torch.save(output_embed_all.detach().cpu(),
                   os.path.join(path, 'output_embed.pt'))
        torch.save(target_embed_all.detach().cpu(),
                   os.path.join(path, 'target_embed.pt'))
        # store radius in case of uncertain weights
        # if args.distance_type == 'uncertain':
        # torch.save(radius_embed_all.detach().cpu(),
        #      os.path.join(path, 'radius.pt'))

        print(input_embed_all.shape, output_embed_all.shape,
              target_embed_all.shape)

    generate_distance_matrix(embed_dir=base_path,
                             epoch=args.epoch,
                             gpu=args.gpu,
                             distance=args.score_type)
    KNN_retrieval(embed_dir=base_path,
                  distance=args.score_type,
                  img_dim=256,
                  dataset=args.dataset,
                  mode='test',
                  seq_len=args.seq_len,
                  num_seq=args.num_seq,
                  ds=args.ds,
                  epoch=args.epoch,
                  K=args.K)
Beispiel #3
0
def main():

    global args
    args = parser.parse_args()
    os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)

    global cuda
    cuda = torch.device('cuda')

    # get validation data with label for plotting the embedding
    transform = transforms.Compose([
        # centercrop
        # CenterCrop(size=224),
        # RandomSizedCrop(consistent=True, size=224, p=0.0),
        Scale(size=(args.img_dim, args.img_dim)),
        ToTensor(),
        Normalize()
    ])

    data_loader = get_data(transform, args.mode, 0)

    if args.output == 'embedding':
        # write the embeddings to writer
        try:  # old version
            writer = SummaryWriter(
                log_dir=args.test_dir + 'embeddings')
        except:  # v1.7
            writer = SummaryWriter(
                logdir=args.test_dir + 'embeddings')

    elif args.output == 'neighbours':

        base_path = os.path.join(args.test_dir, 'radius')
        try:
            if not os.path.exists(base_path):
                os.mkdir(base_path)
        except OSError as error:
            print(error)

    # assuming that model is saved after every 10 epochs

    # extract the files corresponding to each epochs
    model_path = os.path.join(args.test_dir, "model")
    model_filename = args.model
    model_file = os.path.join(model_path, model_filename)
    print(model_file)
    try:
        checkpoint = torch.load(model_file)
    except:
        return

    # print values corresponding to the keys

    if args.output == 'embedding':
        model = model_visualize(sample_size=args.img_dim,
                                seq_len=args.seq_len,
                                pred_steps=args.pred_steps,
                                network=args.net,
                                feature_type='Phi',
                                distance_type=args.distance_type)
    elif args.output == 'neighbours':
        model = model_visualize(sample_size=args.img_dim,
                                seq_len=args.seq_len,
                                pred_steps=args.pred_steps,
                                network=args.net,
                                feature_type='Phi',
                                distance_type=args.distance_type)
    model = model.to(cuda)
    model.eval()

    model = neq_load_customized(model, checkpoint['state_dict'])
    model = nn.DataParallel(model)

    radius_embed_all = torch.Tensor().to(cuda)
    vpath_list = []
    verb_list = torch.LongTensor()
    noun_list = torch.LongTensor()
    first_list = torch.LongTensor()
    last_list = torch.LongTensor()

    with torch.no_grad():
        for idx, input_dict in tqdm(enumerate(data_loader), total=len(data_loader)):

            # get the middle frame of the middle sequence to represent with visualization
            input_seq = input_dict['t_seq']
            vpath = input_dict['vpath']
            verb = input_dict['verb']
            noun = input_dict['noun']
            idx_block = input_dict['idx_block']
            first_frame = idx_block[:, 0]
            last_frame = idx_block[:, 1]
            input_embed = input_seq.permute(0, 2, 1, 3, 4, 5)[:, :, 2, 2, :, :]
            input_seq = input_seq.to(cuda)
            output = model(input_seq)

            # get a 256-dim embedding from F+G
            output_embed = output.squeeze()

            # consider only first 256 dimensions in case we use radii
            # Note that radii will not be displayed in the embeddings
            radius_embed = output_embed[:, -1].expand(1, -1)
            radius_embed_all = torch.cat(
                (radius_embed_all, radius_embed), 1)
            # print("Here")

            vpath_list.extend(vpath)
            verb_list = torch.cat((verb_list, verb), 0)
            noun_list = torch.cat((noun_list, noun), 0)
            first_list = torch.cat((first_list, first_frame), 0)
            last_list = torch.cat((last_list, last_frame), 0)

    if args.output == 'embedding':
        # store the embedding as tensorboard projection to visualize
        writer.add_embedding(
            output_embed_all,
            metadata=verb_embed_all,
            # label_img=input_embed_all,
            global_step=i)
        print("Right here")
    elif args.output == 'neighbours':
        torch.save(radius_embed_all.detach().cpu(), 'radius/radius.pt')
        torch.save(verb_list, 'radius/verb.pt')
        torch.save(noun_list, 'radius/noun.pt')
        torch.save(first_list, 'radius/first_ind.pt')
        torch.save(last_list, 'radius/last_ind.pt')

        with open("radius/vpath.txt", 'w') as f:
            for s in vpath_list:
                f.write(str(s) + '\n')
Beispiel #4
0
def main():

    global args
    args = parser.parse_args()
    os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)

    global cuda
    cuda = torch.device('cuda')

    # get validation data with label for plotting the embedding
    transform = transforms.Compose([
        # centercrop
        CenterCrop(size=224),
        RandomSizedCrop(consistent=True, size=224, p=0.0),
        Scale(size=(args.img_dim, args.img_dim)),
        ToTensor(),
        Normalize()
    ])

    data_loader_pred = get_data(transform, 'test', 0, args.num_seq)
    # dataloader to generate GT embeddings
    data_loader_GT = get_data(transform, 'test', 0, args.num_seq)

    if args.output == 'embedding':
        # write the embeddings to writer
        try:  # old version
            writer = SummaryWriter(log_dir=args.test_dir + 'embeddings')
        except:  # v1.7
            writer = SummaryWriter(logdir=args.test_dir + 'embeddings')

    elif args.output == 'neighbours':

        base_path = os.path.join(
            args.test_dir,
            'neighbours_%s_%s' % (args.score_type, args.dataset))
        try:
            if not os.path.exists(base_path):
                os.mkdir(base_path)
        except OSError as error:
            print(error)

    # assuming that model is saved after every 10 epochs

    # extract the files corresponding to each epochs
    model_path = os.path.join(args.test_dir, "model")
    model_filename = "epoch" + str(args.epoch) + ".pth.tar"
    model_file = os.path.join(model_path, model_filename)
    try:
        checkpoint = torch.load(model_file)
    except:
        print('model failed to load')
        return
    # print values corresponding to the keys
    if args.output == 'embedding':
        model = model_visualize(sample_size=args.img_dim,
                                seq_len=args.seq_len,
                                pred_steps=args.pred_steps,
                                network=args.net,
                                feature_type='Phi',
                                distance_type=args.distance_type)
    elif args.output == 'neighbours':
        model = model_visualize(sample_size=args.img_dim,
                                seq_len=args.seq_len,
                                pred_steps=args.pred_steps,
                                network=args.net,
                                feature_type='F',
                                distance_type=args.distance_type)
    model = model.to(cuda)
    model.eval()

    model_F = model_visualize(sample_size=args.img_dim,
                              seq_len=args.seq_len,
                              pred_steps=1,
                              network=args.net,
                              feature_type='F',
                              distance_type=args.distance_type)

    model_F = model_F.to(cuda)
    model_F.eval()

    model_F = neq_load_customized(model_F, checkpoint['state_dict'])
    model_F = nn.DataParallel(model_F)
    model = neq_load_customized(model, checkpoint['state_dict'])
    model = nn.DataParallel(model)

    # print('here')

    # process ground truth embeddings
    output_embed_all = torch.Tensor().to(cuda)
    target_embed_all = torch.LongTensor()

    GT_input_embed_all = torch.Tensor()
    GT_output_embed_all = torch.Tensor().to(cuda)
    GT_target_embed_all = torch.LongTensor()
    jj = 0
    with torch.no_grad():
        for idx, (input_seq, target) in enumerate(data_loader_GT):
            print('Processing batch #', jj)
            jj += 1

            # input_seq: (B, N, C, SL, H, W) || (B, C, N, SL, H, W)
            input_embed = torch.Tensor()
            # print(input_seq.shape)
            print(input_seq.permute(0, 2, 1, 3, 4, 5)[:, :, -1, 0, :, :].shape)
            for i in range(args.num_seq):
                input_embed = torch.cat(
                    (input_embed, input_seq.permute(0, 2, 1, 3, 4,
                                                    5)[:, :, i, -1, :, :]),
                    0)  # concatenate batch
            # print(input_embed.shape)
            input_seq = input_seq.to(cuda)
            output = model_F(input_seq)
            # print('output shape: ', output.shape)

            output_embed = torch.Tensor().to(cuda)
            for i in range(args.num_seq):
                output_embed = torch.cat((output_embed, output[:, i, :]),
                                         0)  # concatenate batch

            output_embed = output_embed.squeeze()

            if args.distance_type == 'uncertain':
                output_embed = output_embed[:, :-1]
                # radius_embed = output_embed[:, -1].expand(1, -1)
                # print(radius_embed.shape)
            elif args.distance_type == 'certain':
                output_embed = output_embed

            target_embed = target.squeeze()
            target_embed = target_embed.reshape(-1)

            # concatenate all pertaining to current batch
            GT_input_embed_all = torch.cat((GT_input_embed_all, input_embed),
                                           0)
            GT_output_embed_all = torch.cat(
                (GT_output_embed_all, output_embed), 0)
            GT_target_embed_all = torch.cat(
                (GT_target_embed_all, target_embed), 0)

    input_embed_all = torch.Tensor()
    output_embed_all = torch.Tensor().to(cuda)
    target_embed_all = torch.LongTensor()
    if args.distance_type == 'uncertain':
        radius_embed_all = torch.Tensor().to(cuda)

    # print('here')

    with torch.no_grad():
        for idx, (input_seq, target) in tqdm(enumerate(data_loader_pred)):

            # get the middle frame of the middle sequence to represent with visualization
            # input_seq: (B, N, C, SL, H, W)
            # input_embed: (B, N, SL, C, H, W)
            input_embed = torch.Tensor()
            print(input_seq.permute(0, 1, 3, 2, 4, 5)[:, :, -1, :, :, :].shape)
            input_embed = torch.cat(
                (input_embed, input_seq.permute(0, 1, 3, 2, 4,
                                                5)[:, :, -1, :, :, :]), 0)
            input_seq = input_seq.to(cuda)
            output = model(input_seq)
            # print(output.shape)

            # get a 256-dim embedding from F+G
            output_embed = output.squeeze()

            # consider only first 256 dimensions in case we use radii
            # Note that radii will not be displayed in the embeddings

            if args.distance_type == 'uncertain':
                radius_embed = output_embed[:, -1].expand(1, -1)
                output_embed = output_embed[:, :-1]
                # print(radius_embed.shape)
            elif args.distance_type == 'certain':
                output_embed = output_embed

            # actionlabels for each video
            target_embed = target.squeeze()
            target_embed = target_embed.reshape(-1)

            # concatenate all pertaining to current batch
            input_embed_all = torch.cat((input_embed_all, input_embed), 0)
            output_embed_all = torch.cat((output_embed_all, output_embed), 0)
            target_embed_all = torch.cat((target_embed_all, target_embed), 0)
            if args.distance_type == 'uncertain':
                radius_embed_all = torch.cat((radius_embed_all, radius_embed),
                                             1)
            # print("Here")

    if args.output == 'embedding':
        # store the embedding as tensorboard projection to visualize
        writer.add_embedding(
            output_embed_all,
            metadata=target_embed_all,
            # label_img=input_embed_all,
            global_step=i)
        print("Right here")
    elif args.output == 'neighbours':

        # store all the inputs, outputs and targets as a single file
        # output = output.squeeze()
        # output_embed = output[:, :-1, :, :]
        # radius = output[:, -1, :, :]
        # target = target.squeeze()

        # input_embed = input_seq.squeeze().detach().cpu()

        # print(input_embed.shape)

        # choose middle step and middle frame as representation
        # input_embed = input_embed[:, :, 2, :, :].squeeze()
        path = os.path.join(base_path, "%0.5d" % args.epoch)
        print(path)
        try:
            os.mkdir(path)
        except OSError as error:
            print(error)
        torch.save(GT_input_embed_all,
                   os.path.join(base_path, 'GT_input_embed.pt'))
        torch.save(GT_output_embed_all.detach().cpu(),
                   os.path.join(path, 'GT_output_embed.pt'))
        torch.save(GT_target_embed_all.detach().cpu(),
                   os.path.join(path, 'GT_target_embed.pt'))

        torch.save(input_embed_all, os.path.join(base_path, 'input_embed.pt'))
        torch.save(output_embed_all.detach().cpu(),
                   os.path.join(path, 'output_embed.pt'))
        torch.save(target_embed_all.detach().cpu(),
                   os.path.join(path, 'target_embed.pt'))
        # store radius in case of uncertain weights
        if args.distance_type == 'uncertain':
            torch.save(radius_embed_all.detach().cpu(),
                       os.path.join(path, 'radius.pt'))

        print('input_embed:', input_embed_all.shape, '    output_embed: ',
              output_embed_all.shape, '    target_embed: ',
              target_embed_all.shape)
        print('GT_input_embed:', GT_input_embed_all.shape,
              '    GT_output_embed: ', GT_output_embed_all.shape,
              '    GT_target_embed: ', GT_target_embed_all.shape)