# train socal paa = [] pab = [] pbb = [] for ind in tindv: info = indv_geno[ind] genotype = info[2] if(genotype == 'aa'): paa.append([float(info[0]), float(info[1])]) elif(genotype == 'ab'): pab.append([float(info[0]), float(info[1])]) elif(genotype == 'bb'): pbb.append([float(info[0]), float(info[1])]) trainer = socal_trainer(snp, paa, pab, pbb, c1, c2, c3) # time execution in ms t1 = time.time() trainer.train() trainer.rescue(c5) t2 = time.time() dt = (t2-t1)*1000.0 # get truth info = indv_geno[vindv] truth = info[2] # get the ellipsoids - skip the ellipsoid if any cluster can't be # estimated ellipsoids = trainer.get_ellipsoids()
pbb = [] for line in train_data_file: line = line.strip() cols = line.split(',') genotype = cols[2] if(genotype == '1'): paa.append([float(cols[0]), float(cols[1])]) elif(genotype == '2'): pab.append([float(cols[0]), float(cols[1])]) elif(genotype == '3'): pbb.append([float(cols[0]), float(cols[1])]) c1 = 1 c2 = 10 c3 = 100 trainer = socal_trainer('SNP_A-1643086', paa, pab, pbb, c1, c2, c3) trainer.train() trainer.rescue() ellipsoids = trainer.get_ellipsoids() e_aa = ellipsoids['aa'] print 'aa' print e_aa['c'] print e_aa['E'] print print 'ab' e_ab = ellipsoids['ab'] print e_ab['c'] print e_ab['E'] print print 'bb' e_bb = ellipsoids['bb']