epoch_end = epoch_start epoch_prev = epoch_start - 1 assert epoch_prev >= 0 # device use_gpu_if_available = True use_CUDA = use_gpu_if_available and torch.cuda.is_available() if use_CUDA: device = torch.device('cuda') else: device = torch.device('cpu') print('# using', device) # loading VGG11-bn pretrained model #vgg16 = torchvision.models.vgg16(pretrained=False) vgg16 = DCTnet.DCTnet2v2() print(vgg16) # loading the parameters fnParam_prev = f'data/ex20210103_trainDCT2v2_epoch{epoch_prev:03d}.pth' if epoch_prev != 0: with open(fnParam_prev, mode='rb') as f: vgg16.load_state_dict(torch.load(f)) nn = vgg16.to(device) nn.train() # dataset & dataloader dL = ilsvrc2012.datasets('L') bsize = 256 dl = torch.utils.data.DataLoader(dL,
import sys import ilsvrc2012 import DCTnet if __name__ == '__main__': if len(sys.argv) != 2: print(f'usage: {sys.argv[0]} epoch') exit() epoch = int(sys.argv[1]) # loading VGG16 model #vgg16 = torchvision.models.vgg16(pretrained=False) vgg16 = DCTnet.DCTnet2() print(vgg16) # loading the parameters fnParam = f'data/ex20201228b_trainDCT2_epoch{epoch:03d}.pth' with open(fnParam, mode='rb') as f: vgg16.load_state_dict(torch.load(f)) # device use_gpu_if_available = True use_CUDA = use_gpu_if_available and torch.cuda.is_available() if use_CUDA: device = torch.device('cuda') else: device = torch.device('cpu') print('# using', device)
import sys import ilsvrc2012 import DCTnet if __name__ == '__main__': if len(sys.argv) != 2: print(f'usage: {sys.argv[0]} epoch') exit() epoch = int(sys.argv[1]) # loading VGG16 model #vgg16 = torchvision.models.vgg16(pretrained=False) vgg16 = DCTnet.DCTnet() print(vgg16) # loading the parameters fnParam = f'data/ex20201228_trainDCT_epoch{epoch:03d}.pth' with open(fnParam, mode='rb') as f: vgg16.load_state_dict(torch.load(f)) # device use_gpu_if_available = True use_CUDA = use_gpu_if_available and torch.cuda.is_available() if use_CUDA: device = torch.device('cuda') else: device = torch.device('cpu') print('# using', device)
import ilsvrc2012 import DCTnet if __name__ == '__main__': if len(sys.argv) != 2: print(f'usage: {sys.argv[0]} epoch') exit() epoch = int(sys.argv[1]) # loading VGG16 model #vgg16 = torchvision.models.vgg16(pretrained=False) vgg16 = DCTnet.DCTnet3() print(vgg16) # loading the parameters fnParam = f'data/ex20201228c_trainDCT3_epoch{epoch:03d}.pth' with open(fnParam, mode='rb') as f: vgg16.load_state_dict(torch.load(f)) # device use_gpu_if_available = True use_CUDA = use_gpu_if_available and torch.cuda.is_available() if use_CUDA: device = torch.device('cuda') else: device = torch.device('cpu') print('# using', device)