def setUp(self):
     self.mn = MockNotifier()
     self.fo = FileObserver(self.mn)
     self.fn1 = self.get_name()
     self.fn2 = self.get_name()
     self.log(self.fn1)
     self.log(self.fn1) # fn1/fn2 has messages starting from 3
     self.log(self.fn2) # the counter is unique, remember!
     self.fm1 = FileMonitor(self.fn1)
     self.fm2 = FileMonitor(self.fn2)
Beispiel #2
0
    def to_train(self):
        # Vector of angles is created, from -90 to 90, steps of 45, and converting it to radians
        angles_vector = np.arange(-90, 90 + 45, 45) * math.pi / 180.0
        # The buffer is created, it will contain the files that are created while the gpu is busy
        tf_data_buffer = []
        # An observer is created to help us see what files of interest to us have already been deleted
        file_observer = fo.FileObserver(files=self.training_tf_records_files)
        # Infinite loop to create training files that have been deleted
        while True:
            # While loop if the buffer size limit is not exceeded
            while len(tf_data_buffer) < self.training_buffer_size_limit:
                # A list is created where tfrecords files are saved
                tf_data = []
                # The range of speakers contained in the training file is iterated.
                for speaker in tqdm(range(self.n_speakers_in_training_file)):
                    # The number of speakers that the mix will have is randomly selected
                    this_n_speakers_in_audio = np.random.randint(
                        self.min_mixed_speakers_in_training_file,
                        self.max_mixed_speakers_in_training_file)
                    #the information of a certain number of training announcers from the database is randomly selected
                    speakers_data = self.get_random_speakers_data(
                        self.ids_speakers_in_train, this_n_speakers_in_audio)
                    #Each speaker can have one or more samples, therefore, one is chosen at random for each speaker, this is repeated according to the times that the user defines it
                    for n in range(self.n_repeated_speaker_in_training_file):
                        # Variable is created to keep the audio signal value of the speakers
                        audio_signals = np.zeros(
                            (this_n_speakers_in_audio, self.window_length))
                        # Variable is created to keep the energy value that audio signals have
                        speakers_audio_energies = np.zeros(
                            this_n_speakers_in_audio)
                        # It iterates over each of the speakers, taking random audio
                        for x, speaker_data in enumerate(speakers_data):
                            # The audio data is obtained: start VAD and audio path
                            random_audio_data, VAD_random_start, audio_path = self.get_random_speaker_audio(
                                speaker_data, self.audio_folder_path,
                                self.window_length)
                            # The signal audio is loaded
                            raw_signal, sr = sf.read(audio_path)
                            # It is cut in the part indicated by VAD
                            audio_signals[x] = raw_signal[
                                VAD_random_start:VAD_random_start +
                                self.window_length]
                            # The audio energy is calculated
                            speakers_audio_energies[x] = np.sqrt(
                                np.square(audio_signals[x]).sum() /
                                float(len(audio_signals[x])))

                        # A noise scale is obtained from the highest energy value in the list
                        noise_scale = np.max(
                            speakers_audio_energies) / speakers_audio_energies

                        # All values are normalized according to the noise scale
                        for h in range(this_n_speakers_in_audio):
                            audio_signals[h] = self.normalize_signal(
                                audio_signals[h] * noise_scale[h])

                        # The speaker's angles are randomly obtained
                        doas = random.sample(angles_vector,
                                             this_n_speakers_in_audio)

                        # The first angle is considered as the one of interes (SOI)
                        doa_steer = doas[0]

                        # A matrix of the size [microphones + 2, window size] is created (the last two data of the first dimension keep the signal of the
                        # source of interest of microphone 0 and source of interference of microphone 0,
                        # this because also it is given the same shift).

                        X = np.zeros([self.M + 2, self.window_length])

                        # All signals are mixed, this will be used to simulate microphone 0
                        mix_signal = np.sum(
                            audio_signals[0:, :],
                            axis=0) / float(this_n_speakers_in_audio)

                        # A variable is created where the signals will be saved with offset to simulate the microphone signal 1
                        signal_delay = np.zeros(self.window_length)
                        for audio_source, doa in zip(audio_signals, doas):
                            signal_delay += delay_f(
                                audio_source,
                                (self.beamFormer.d / self.beamFormer.c) *
                                math.sin(doa), self.sample_rate)
                        # Data is normalized
                        signal_delay = signal_delay / float(
                            this_n_speakers_in_audio)
                        # microphone 0
                        X[0, :] = mix_signal
                        # microphone 1
                        X[1, :] = signal_delay
                        # source of interest at microphone 0
                        X[2, :] = audio_signals[0, :]
                        # interference sources at microphone 0
                        X[3, :] = np.sum(
                            audio_signals[1:, :],
                            axis=0) / float(this_n_speakers_in_audio - 1)

                        beamformer_result = self.beamFormer.phase_mask(
                            X=X,
                            doa_steer=doa_steer,
                            phase_diff_threshold=self.phase_diff_threshold,
                            N=self.window_length,
                            nframes=self.nframes,
                            fs=self.sample_rate)

                        beamformer_result = beamformer_result[:, self.nframes *
                                                              4:self.nframes *
                                                              -3]

                        # beamformer_result[0, :] SOI calculated by the beamformer
                        # beamformer_result[1, :] Interference calculated by the beamformer
                        # beamformer_result[2, :] audio at microphone 0
                        # beamformer_result[3, :] SOI (Clean)
                        # beamformer_result[4, :] Interference (Clean)

                        # stft are calculated for all resulting signals
                        _, _, Z_s1 = signal.stft(beamformer_result[3, :],
                                                 fs=self.sample_rate,
                                                 nperseg=self.nperseg,
                                                 noverlap=self.noverlap)
                        _, _, Z_s2 = signal.stft(beamformer_result[4, :],
                                                 fs=self.sample_rate,
                                                 nperseg=self.nperseg,
                                                 noverlap=self.noverlap)
                        _, _, Z_X_0 = signal.stft(beamformer_result[2, :],
                                                  fs=self.sample_rate,
                                                  nperseg=self.nperseg,
                                                  noverlap=self.noverlap)
                        _, _, Z_DOA = signal.stft(beamformer_result[0, :],
                                                  fs=self.sample_rate,
                                                  nperseg=self.nperseg,
                                                  noverlap=self.noverlap)
                        _, _, Z_interf = signal.stft(beamformer_result[1, :],
                                                     fs=self.sample_rate,
                                                     nperseg=self.nperseg,
                                                     noverlap=self.noverlap)
                        # the magnitudes are passed to decibels
                        db_mag_s1 = to_dB_mag(np.abs(Z_s1), self.MIN_AMP,
                                              self.AMP_FAC)
                        db_mag_s2 = to_dB_mag(np.abs(Z_s2), self.MIN_AMP,
                                              self.AMP_FAC)
                        db_mag_X_0 = to_dB_mag(np.abs(Z_X_0), self.MIN_AMP,
                                               self.AMP_FAC)
                        db_mag_DOA = to_dB_mag(np.abs(Z_DOA), self.MIN_AMP,
                                               self.AMP_FAC)
                        db_mag_interf = to_dB_mag(np.abs(Z_interf),
                                                  self.MIN_AMP, self.AMP_FAC)

                        # The VAD frequency mask is created
                        max_mag = np.max(db_mag_X_0)
                        speech_VAD = (db_mag_X_0 >
                                      (max_mag - self.THRESHOLD)).astype(int)
                        # Masks are created from the beamformer
                        Y_beamformer = np.array([
                            db_mag_DOA > db_mag_interf,
                            db_mag_DOA < db_mag_interf
                        ]).astype(int)
                        # data is normalized
                        n_db_mag_X_0 = (db_mag_X_0 - db_mag_X_0.mean()
                                        ) / float(db_mag_X_0.std())

                        # Source of interest and interference are calculated using the mask created by the beamformer
                        n_db_mag_source = n_db_mag_X_0 * Y_beamformer[0]
                        n_db_mag_interf = n_db_mag_X_0 * Y_beamformer[1]

                        # IBM is calculated
                        Y = np.array(
                            [db_mag_s1 > db_mag_s2,
                             db_mag_s1 < db_mag_s2]).astype(int)
                        # _, source_recovered = signal.istft(Y[0] * Z_X_0 , fs=self.sample_rate ,nperseg= NPERSEG, noverlap = NOVERLAP)
                        # _, inter_recovered = signal.istft(Y[1] * Z_X_0 , fs=self.sample_rate ,nperseg= NPERSEG, noverlap = NOVERLAP)
                        Y = np.transpose(Y, [1, 2, 0])

                        # sf.write('PhaseMask_original_ref.wav', o_[3, :], self.sample_rate)
                        # sf.write('PhaseMask_original_inter.wav', o_[4, :], self.sample_rate)
                        # sf.write('PhaseMask_beamformer_ref.wav', o_[0, :], self.sample_rate)
                        # sf.write('PhaseMask_beamformer_inter.wav', o_[1, :], self.sample_rate)
                        # sf.write('PhaseMask_beamformer_m0.wav', o_[2, :], self.sample_rate)
                        # sf.write('PhaseMask_mask_ref.wav', source_recovered, self.sample_rate)
                        # sf.write('PhaseMask_mask_inter.wav', inter_recovered, self.sample_rate)
                        # exit(0)
                        complex_X_0 = np.array([Z_X_0.real, Z_X_0.imag])
                        complex_X_0 = np.transpose(complex_X_0, [1, 2, 0])
                        data = {
                            'n_db_mag_X_0':
                            self.tf_converter.bytes_feature(
                                n_db_mag_X_0.astype(np.float32).tostring()),
                            'n_db_mag_ref':
                            self.tf_converter.bytes_feature(
                                n_db_mag_source.astype(np.float32).tostring()),
                            'n_db_mag_interf':
                            self.tf_converter.bytes_feature(
                                n_db_mag_interf.astype(np.float32).tostring()),
                            'complex_X_0':
                            self.tf_converter.bytes_feature(
                                complex_X_0.astype(np.float32).tostring()),
                            'MASK':
                            self.tf_converter.bytes_feature(
                                Y.astype(np.uint8).tostring()),
                            'VAD':
                            self.tf_converter.bytes_feature(
                                speech_VAD.astype(np.uint8).tostring())
                        }

                        tf_data.append(data)
                        if len(tf_data_buffer
                               ) > 0:  #if we have data in the buffer
                            if not file_observer.exist_all_files(
                            ):  #and if there is no file
                                print("lvl 2")
                                name_file = file_observer.missing_file(
                                )  # name of the missing file is obteined
                                self.tf_converter.set_features(
                                    tf_data_buffer.pop()).convert_to_tf(
                                        name_file
                                    )  # the missing file is created

                tf_data_buffer.append(
                    tf_data)  # created data is added to the buffer
                while not file_observer.exist_all_files(
                ):  # while files are missing
                    if len(
                            tf_data_buffer
                    ) > 0:  #  If the buffer has data, the file is created
                        print("lvl 1")
                        name_file = file_observer.missing_file()
                        self.tf_converter.set_features(
                            tf_data_buffer.pop()).convert_to_tf(name_file)
                    else:
                        break  ##else if it has nothing, break the loop

            file_observer.wait_if_exist_files(
            )  # if the buffer is full, wait until a file is missing
            print("lvl 0")
            name_file = file_observer.missing_file()
            self.tf_converter.set_features(
                tf_data_buffer.pop()).convert_to_tf(name_file)
Beispiel #3
0
    def run_model(self):

        path = self.tf_records_training_path
        test_path = self.tf_records_test_path

        # number of tfrecords files, default is 8
        files = [0, 1, 2, 3, 4, 5, 6, 7]
        tf_records_files = [
            path + '{}.tfrecords'.format(global_step) for global_step in files
        ]
        test_tf_records_files = [test_path + '0.tfrecords']

        if (self.network == "BLSTMModel"):
            ###BinaryMaskModel
            print("Using BLSTMModel")
            model = BLSTMModel(
                num_input=self.num_input,
                timesteps=self.timesteps,
                num_hidden=self.num_hidden,
                layers=self.layers,
                sources=self.sources,
                optimizer=self.opt_params.optimizer,
                learning_rate=self.opt_params.learning_rate,
                batch_size=self.batch_size,
                momentum=self.opt_params.momentum,
                forget_bias=0.0 if self.load_session == "true" else
                1.0)  # 0.0 if self.load_session == "true" else 1.0
        elif (self.network == "ChimeraNetwork"):
            ###BinaryMaskModel
            print("Using ChimeraNetwork")
            model = ChimeraNetwork(
                num_input=self.num_input,
                timesteps=self.timesteps,
                num_hidden=self.num_hidden,
                layers=self.layers,
                d_vector=self.d_vector,
                sources=self.sources,
                activation_function=self.activation_function,
                optimizer=self.opt_params.optimizer,
                learning_rate=self.opt_params.learning_rate,
                batch_size=self.batch_size,
                alpha=self.alpha,
                momentum=self.opt_params.momentum,
                forget_bias=0.0 if self.load_session == "true" else
                1.0)  # 0.0 if self.load_session == "true" else 1.0

        file_observer = FileObserver(tf_records_files)

        tfRecordsParser = TFRecordsParser(self.num_input, self.timesteps,
                                          self.sources)

        tf_records_reader_training = TfRecordsReader(
            tf_records_files=tf_records_files,
            parse_function=tfRecordsParser.parse_function,
            batch_size=self.batch_size)
        tf_records_reader_test = TfRecordsReader(
            tf_records_files=test_tf_records_files,
            parse_function=tfRecordsParser.parse_function,
            batch_size=self.batch_size,
            shuffle=False)

        init_op = tf.group(tf.global_variables_initializer(),
                           tf.local_variables_initializer())
        tf_records_size_training = self.n_speakers_train * self.n_repeated_speakers_train
        steps_to_complete_tf_record = tf_records_size_training / float(
            self.batch_size)

        ##############Config paths
        speakers_to_save = 2

        total_samples = speakers_to_save * self.files_per_speaker_test

        if not os.path.exists(self.results_path + self.file_name + '/'):
            os.makedirs(self.results_path + self.file_name + '/')
        if not os.path.exists(self.results_path + self.file_name + '/plot/'):
            os.makedirs(self.results_path + self.file_name + '/plot/')
        if not os.path.exists(self.results_path + self.file_name +
                              '/rec_audios/'):
            os.makedirs(self.results_path + self.file_name + '/rec_audios/')

        for speaker in range(speakers_to_save):
            for global_step in range(self.files_per_speaker_test):
                if not os.path.exists(
                        self.results_path + self.file_name +
                        '/plot/{}/{}/'.format(speaker, global_step)):
                    os.makedirs(self.results_path + self.file_name +
                                '/plot/{}/{}/'.format(speaker, global_step))

        for global_step in range(0, total_samples,
                                 self.files_per_speaker_test):
            if not os.path.exists(self.results_path + self.file_name +
                                  '/rec_audios/{}/'.format(global_step)):
                os.makedirs(self.results_path + self.file_name +
                            '/rec_audios/{}/'.format(global_step))
        ##############

        with tf.Session() as sess:
            print("V15")
            train_writer = tf.summary.FileWriter(
                self.graphs_path + '{}_train'.format(self.file_name))
            test_writer = tf.summary.FileWriter(
                self.graphs_path + '{}_test'.format(self.file_name))

            train_writer.add_graph(sess.graph)
            sess.run(init_op)
            training_handle = sess.run(
                tf_records_reader_training.iterator.string_handle())
            testing_handle = sess.run(
                tf_records_reader_test.iterator.string_handle())

            saver = tf.train.Saver()
            step = 0

            if self.load_session == "true":
                file = open(
                    self.session_path + '{}.stp'.format(self.file_name), "r")
                step = int(file.read().strip())
                print("STEP:", step)
                file.close()
                #Restoring session
                saver.restore(
                    sess, self.session_path +
                    '{}/model_weights.ckpt'.format(self.file_name))
                ######### 2000 = tfrecord file size, 8 = tfrecord files
                total_steps = (
                    self.n_speakers_train * self.n_repeated_speakers_train
                ) * 8 * self.n_epochs * self.globa_steps / self.batch_size
                ####remaining global steps                                 2000 = tfrecord file size, 8 = tfrecord files
                remaining = int(
                    ((total_steps - step) * self.batch_size) /
                    ((self.n_speakers_train * self.n_repeated_speakers_train) *
                     8 * self.n_epochs))

                print("Remaining global_steps:", remaining)
                new_step = (
                    self.n_speakers_train *
                    self.n_repeated_speakers_train) * 8 * self.n_epochs * (
                        self.globa_steps - remaining) / self.batch_size
                print("NEW STEP:", new_step)
                step = new_step
                self.globa_steps = remaining

            train_acc_mean = []
            train_loss_mean = []

            for global_step in range(0, self.globa_steps):
                ####################################
                ###########  TRAINING ##############
                ####################################
                for epoch in range(0, self.n_epochs):
                    file_observer.wait_if_not_exist_files()
                    sess.run(tf_records_reader_training.iterator.initializer)
                    last_tf_records_file_loaded = 0
                    train_acc_mean = []
                    train_loss_mean = []
                    while True:
                        try:
                            n_db_mag_X_0, n_db_mag_source, n_db_mag_interf, complex_X_0, MASK, VAD = sess.run(
                                tf_records_reader_training.next_element,
                                feed_dict={
                                    tf_records_reader_training.handle:
                                    training_handle
                                })

                            _, l, acc, lg, bmp, train_summary = sess.run(
                                [
                                    model.optimizer, model.loss,
                                    model.accuracy, model.y_pred,
                                    model.MASK_hat, model.summary
                                ],
                                feed_dict={
                                    model.X:
                                    np.concatenate(
                                        [n_db_mag_source, n_db_mag_interf],
                                        axis=2),
                                    model.Y_true:
                                    MASK,
                                    model.VAD:
                                    VAD,
                                    model.X_real:
                                    complex_X_0[:, :, :, 0],
                                    model.X_imag:
                                    complex_X_0[:, :, :, 1],
                                    model.n_db_mag_X_0:
                                    n_db_mag_X_0,
                                    model.n_db_mag_X_0:
                                    n_db_mag_X_0
                                })

                            train_acc_mean.append(acc)
                            train_loss_mean.append(l)

                            train_writer.add_summary(train_summary, step)
                            if step % self.display_step == 0 or step == 1:
                                print(lg[0][0])
                                print(bmp.shape)
                                print(
                                    np.sum(np.count_nonzero(bmp, axis=1),
                                           axis=0))
                                print(
                                    'Step {}, globa_steps {} Minibatch Loss:{} Acc:{}'
                                    .format(str(step), str(global_step),
                                            str(l), str(acc)))
                            step += 1
                            if step % steps_to_complete_tf_record == 0:
                                if epoch == self.n_epochs - 1:
                                    os.remove(path + "{}.tfrecords".format(
                                        last_tf_records_file_loaded))
                                last_tf_records_file_loaded += 1

                        except tf.errors.OutOfRangeError:
                            break

                    print('epoch acc mean :{}'.format(
                        str(np.array(train_acc_mean).mean())))
                    file = open(
                        self.session_path + '{}.stp'.format(self.file_name),
                        "w")
                    file.write(str(step))
                    file.close()
                    save_path = saver.save(
                        sess, self.session_path +
                        '{}/model_weights.ckpt'.format(self.file_name))

                ####################################
                ###########  TESTING  ##############
                ####################################
                #if global_step % 1 == 0:
                sess.run(tf_records_reader_test.iterator.initializer)
                while True:
                    try:
                        n_db_mag_X_0, n_db_mag_source, n_db_mag_interf, complex_X_0, MASK, VAD = sess.run(
                            tf_records_reader_test.next_element,
                            feed_dict={
                                tf_records_reader_test.handle: testing_handle
                            })
                        if (type(model) is ChimeraNetwork):
                            res_hat_, l, acc, test_summary, Z_, Y_ = sess.run(
                                [
                                    model.res_hat, model.loss, model.accuracy,
                                    model.summary, model.Z_res, model.Y_res
                                ],
                                feed_dict={
                                    model.X:
                                    np.concatenate(
                                        [n_db_mag_source, n_db_mag_interf],
                                        axis=2),
                                    model.Y_true:
                                    MASK,
                                    model.VAD:
                                    VAD,
                                    model.X_real:
                                    complex_X_0[:, :, :, 0],
                                    model.X_imag:
                                    complex_X_0[:, :, :, 1],
                                    model.n_db_mag_X_0:
                                    n_db_mag_X_0
                                })
                        else:
                            res_hat_, l, acc, test_summary = sess.run(
                                [
                                    model.res_hat, model.loss, model.accuracy,
                                    model.summary
                                ],
                                feed_dict={
                                    model.X:
                                    np.concatenate(
                                        [n_db_mag_source, n_db_mag_interf],
                                        axis=2),
                                    model.Y_true:
                                    MASK,
                                    model.VAD:
                                    VAD,
                                    model.X_real:
                                    complex_X_0[:, :, :, 0],
                                    model.X_imag:
                                    complex_X_0[:, :, :, 1],
                                    model.n_db_mag_X_0:
                                    n_db_mag_X_0
                                })

                        print(
                            'TEST Step {}, globa_steps {} Minibatch Loss:{} Acc:{}'
                            .format(str(step), str(global_step), str(l),
                                    str(acc)))
                        test_writer.add_summary(test_summary, step)
                    except tf.errors.OutOfRangeError:
                        break

                    #Creating audios of two speakers just to check
                    for sample in range(
                            0, speakers_to_save * self.files_per_speaker_test,
                            self.files_per_speaker_test):
                        a_hat = res_hat_[
                            sample:sample + self.files_per_speaker_test, :, :,
                            0]  # self.timesteps , self.num_input , self.sources
                        b_hat = res_hat_[sample:sample +
                                         self.files_per_speaker_test, :, :, 1]
                        x_a_hat_list = []
                        x_b_hat_list = []

                        for j in range(0, self.files_per_speaker_test):
                            _, x_a_hat = signal.istft(
                                a_hat[j],
                                fs=self.sample_rate,
                                nperseg=self.stft_nperseg,
                                noverlap=self.stft_noverlap)
                            _, x_b_hat = signal.istft(
                                b_hat[j],
                                fs=self.sample_rate,
                                nperseg=self.stft_nperseg,
                                noverlap=self.stft_noverlap)
                            x_a_hat_list += x_a_hat.tolist()
                            x_b_hat_list += x_b_hat.tolist()
                        sf.write(
                            self.results_path + self.file_name +
                            '/rec_audios/{}/{}_x_a_hat.wav'.format(
                                sample, global_step), x_a_hat_list,
                            self.sample_rate)
                        sf.write(
                            self.results_path + self.file_name +
                            '/rec_audios/{}/{}_x_b_hat.wav'.format(
                                sample, global_step), x_b_hat_list,
                            self.sample_rate)

            self.make_eval(model, sess, tf_records_reader_test, step,
                           train_acc_mean, train_loss_mean, testing_handle)
class FileObserverTest(unittest.TestCase, FileTestHelper):
    def setUp(self):
        self.mn = MockNotifier()
        self.fo = FileObserver(self.mn)
        self.fn1 = self.get_name()
        self.fn2 = self.get_name()
        self.log(self.fn1)
        self.log(self.fn1) # fn1/fn2 has messages starting from 3
        self.log(self.fn2) # the counter is unique, remember!
        self.fm1 = FileMonitor(self.fn1)
        self.fm2 = FileMonitor(self.fn2)
        
    def tearDown(self):
        os.unlink(self.fn1)
        os.unlink(self.fn2)
    
    def testEmpty(self):
        self.fo.register(self.fm1, True)
        self.fo.register(self.fm2, False)
        self.fo.alarm()
        
        self.assertEqual(self.mn.notifications, [])

    def testOneLine(self):
        self.fo.register(self.fm1)
        self.log(self.fn1)
        self.fo.alarm()
        self.assertEqual(self.mn.notifications, [('logline', self.fn1, msg_template % (4, self.fn1), False)])

    def testTwoLines(self):
        self.fo.register(self.fm1, True)
        self.fo.register(self.fm2, False)
        self.log(self.fn1)
        self.log(self.fn2)
        self.fo.alarm()
        
        self.assertEqual(self.mn.notifications,
                         [('logline', self.fn1, msg_template % (4, self.fn1), True),
                          ('logline', self.fn2, msg_template % (5, self.fn2), False)])

    def testFalseAlarm(self):
        self.fo.register(self.fm1)
        self.fo.alarm()
        self.log(self.fn1)

        self.assertEqual(self.mn.notifications, [])
        self.fo.alarm()
        self.assertEqual(self.mn.notifications, [('logline', self.fn1, msg_template % (4, self.fn1), False) ])

    def testThreeLines(self):
        self.fo.register(self.fm1)
        self.fo.register(self.fm2)
        self.log(self.fn1)
        self.log(self.fn2)
        self.log(self.fn1)
        self.fo.alarm()
        
        self.assertEqual(Set(self.mn.notifications),
                         Set([('logline', self.fn1, msg_template % (4, self.fn1), False),
                          ('logline', self.fn2, msg_template % (5, self.fn2), False),
                          ('logline', self.fn1, msg_template % (6, self.fn1), False)]))