Beispiel #1
0
def AggregateResults (GoldTEESXML,PredFileList,EpochFocus,AggeragationFolder,Description, ShouldWriteBackAggregation):
    import copy as cp ; 
    print "-"*80
    print Description
    print GoldTEESXML
    print "-"*20 
    for idx , fileaddr in enumerate (PredFileList):
        #print idx+1 , fileaddr
        assert "EpochNo"+ str(EpochFocus)+".xml" in fileaddr
        assert GE.FILE_CheckFileExists (fileaddr) == True
    #print "-"*20 
    assert GE.FILE_CheckFileExists (GoldTEESXML) == True
    
    if ShouldWriteBackAggregation:
        if not GE.OS_IsDirectory (AggeragationFolder):
            GE.OS_MakeDir (AggeragationFolder)
        if AggeragationFolder[-1]<>"/":
            AggeragationFolder+="/" 
            
    #Process GOLD
    GoldTree = LoadTEESFile_GetTreeRoot (GoldTEESXML, True) 
    GoldData = Get_Interaction_Results (GoldTree)
    GoldKeys = sorted(GoldData.keys()) 
    y_true = np.array ([GoldData[interaction_id] for interaction_id in GoldKeys] , dtype=np.int16)
    
    PredMetric = [] 
    Agg_results = {} 
    for FileAddress in PredFileList:
        print "/".join (FileAddress.split("/")[-4:])
        PredTree = LoadTEESFile_GetTreeRoot (FileAddress, True) 
        PredData = Get_Interaction_Results (PredTree)
        assert sorted(PredData.keys ()) == GoldKeys
        y_pred = [] 
        for interaction_key in GoldKeys:
            y_pred.append (PredData[interaction_key])
            #Create Key in Agg_results dict if not exists
            if not interaction_key in Agg_results:
                Agg_results[interaction_key] = 0 ;
            #update Agg_results dict ...
            Agg_results[interaction_key]+= PredData[interaction_key] 
                
        y_pred = np.array (y_pred , dtype=np.int16)
        EvaluationResult = Evaluate (y_true, y_pred) 
        PredMetric.append (EvaluationResult["positive"]["f1-score"]) 
         
    print "-"*20 , "\n" , len(PredFileList) , "MEAN : " , f_round (np.mean (PredMetric)) , "STD: " , f_round (np.std  (PredMetric)) , "\n"
    
    Agg_Thresholds_Evaluation = [] 
    for threshold_level in range(1, len(PredFileList)+1):
        y_pred = [] ;
        for interaction_key in GoldKeys:
            if Agg_results[interaction_key] >= threshold_level:
                y_pred.append (1)
            else:
                y_pred.append (0)
        
        y_pred = np.array (y_pred , dtype=np.int16)
        EvaluationResult = Evaluate (y_true, y_pred) 
        print '{:2d}'.format(threshold_level), f_round (EvaluationResult["positive"]["recall"]), f_round(EvaluationResult["positive"]["precision"]), f_round(EvaluationResult["positive"]["f1-score"]) 
        Agg_Thresholds_Evaluation.append ( (threshold_level, EvaluationResult["positive"]["recall"], EvaluationResult["positive"]["precision"], EvaluationResult["positive"]["f1-score"] )  )
    
    Best_Threshold = sorted (Agg_Thresholds_Evaluation , key = lambda x: x[3] , reverse=True)[0]
    print "\n" , f_round (np.mean (PredMetric)) + "\t" + f_round (np.std  (PredMetric)) + "\t"  + '{:2d}'.format(Best_Threshold[0]) + "\t" + f_round (Best_Threshold[1]) + "\t" + f_round (Best_Threshold[2]) + "\t"+ f_round (Best_Threshold[3]) 
    FINAL_RES_STRING = f_round (np.mean (PredMetric)) + ";" + f_round (np.std  (PredMetric)) + ";"  + '{:2d}'.format(Best_Threshold[0]) + ";" + f_round (Best_Threshold[1]) + ";" + f_round (Best_Threshold[2]) + ";"+ f_round (Best_Threshold[3]) 
    
    if ShouldWriteBackAggregation:
        WRITTEN_Agg_Thresholds_Evaluation = [] 
        for threshold_level in range(1, len(PredFileList)+1):
            writeback_agg_results = {}
            for interaction_key in GoldKeys:
                if Agg_results[interaction_key] >= threshold_level:
                    writeback_agg_results[interaction_key] = 1
                else:
                    writeback_agg_results[interaction_key] = 0
            
            gold_tree = cp.deepcopy (GoldTree)
            for interaction_element in gold_tree.findall (".//interaction"):
                interaction_id = interaction_element.attrib["id"]
                interaction_e1 = interaction_element.attrib["e1"]
                interaction_e2 = interaction_element.attrib["e2"]
                key = (interaction_id,interaction_e1,interaction_e2)
                interaction_type = "Lives_In" if writeback_agg_results[key]==1 else "neg" 
                interaction_element.set('type',interaction_type)
            
            wb_filename = "Aggr_Epoch_" + str(EpochFocus) + "_Threshold_" + str(threshold_level) + "_" ;
            if PredFileList[0].split("/")[-1].startswith ("LinComb"):
                wb_filename+= "LinComb"
            else:
                wb_filename+= "Forward"
            wb_filename+= ".xml" 
            PredictedFileAddress = AggeragationFolder + wb_filename
            LOADSAVE_save_xml(gold_tree, PredictedFileAddress) 
            EvaluationResult = CompareWithGold (GoldData, PredictedFileAddress)
            WRITTEN_Agg_Thresholds_Evaluation.append ( (threshold_level, EvaluationResult["positive"]["recall"], EvaluationResult["positive"]["precision"], EvaluationResult["positive"]["f1-score"] )  )            
            print PredictedFileAddress, "    " , '{:2d}'.format(threshold_level), f_round (EvaluationResult["positive"]["recall"]), f_round(EvaluationResult["positive"]["precision"]), f_round(EvaluationResult["positive"]["f1-score"]) 
        assert Agg_Thresholds_Evaluation == WRITTEN_Agg_Thresholds_Evaluation        
    #import pdb ; pdb.set_trace()
    return FINAL_RES_STRING       
    def ConfigFileVerification (self):
        #1: Checking Class types
        if not "CLASSES" in self.Configs:
            self.PROGRAM_Halt ("Missing CLASSES dictionary in Config file."); 
        LOCAL_CLASSES = self.Configs["CLASSES"]; 
        if not "Negative" in LOCAL_CLASSES:
            self.PROGRAM_Halt ("Negative class should be defined in the config file."); 
        if not "Positive" in LOCAL_CLASSES:
            self.PROGRAM_Halt ("Positive class should be defined in the config file.");
        if len(LOCAL_CLASSES) <> 2:
            self.PROGRAM_Halt ('There should be only Positive and Negatives classes. For Multiclass use e.g., "Positive": ["class1", "class2"]');

        N , P = [] , [] ; 
        if isinstance (LOCAL_CLASSES["Negative"] , basestring):
            N.append (LOCAL_CLASSES["Negative"]);
        elif isinstance (LOCAL_CLASSES["Negative"] , list):
            N.extend (LOCAL_CLASSES["Negative"]); 
        if len(N) != len(set(N)):
            self.PROGRAM_Halt ("Negative class cannot have duplicate defined types."); 

        if isinstance (LOCAL_CLASSES["Positive"] , basestring):
            P.append (LOCAL_CLASSES["Positive"]);
        elif isinstance (LOCAL_CLASSES["Positive"] , list):
            P.extend (LOCAL_CLASSES["Positive"]); 
        if len(P) != len(set(P)):
            self.PROGRAM_Halt ("Positive class cannot have duplicate defined types."); 
        if len (set(N).intersection(set(P))) > 0:
            self.PROGRAM_Halt ("Shared defined class type between Positive and Negative class."); 
        
        self.__DO_NOT_SET_ME["CLASSES"] = {"Negative": None, "Positive":None} ; 
        self.__DO_NOT_SET_ME["CLASSES"]["Negative"] = set (i.lower() for i in N); #<<<CRITICAL>>> LOWER CLASS NAMES
        self.__DO_NOT_SET_ME["CLASSES"]["Positive"] = set (i.lower() for i in P); #<<<CRITICAL>>> LOWER CLASS NAMES
        
        #What labels should be used when writing back prediction results into xmls: 
        self.__DO_NOT_SET_ME["WRITEBACK_CLASSES"] = {"Negative": None, "Positive":None} ; 
        self.__DO_NOT_SET_ME["WRITEBACK_CLASSES"]["Negative"] = set (i for i in N); #<<<CRITICAL>>> LOWER CLASS NAMES
        self.__DO_NOT_SET_ME["WRITEBACK_CLASSES"]["Positive"] = set (i for i in P); #<<<CRITICAL>>> LOWER CLASS NAMES
        
        #Renaming relations into other relations ...
        #Good for lots of things, for example integrating many non-relevant relations into a single group
        if not "RENAME_CLASSES" in self.Configs:
            self.__DO_NOT_SET_ME["RENAME_CLASSES"] = {}
        else:
            if not isinstance (self.Configs["RENAME_CLASSES"], dict):
                self.PROGRAM_Halt ("RENAME_CLASSES in the config file should be a dictionary or not given at all."); 

            temp_rename_class = {}
            
            for key in self.Configs["RENAME_CLASSES"]:
                if not isinstance(key, basestring):
                    self.PROGRAM_Halt ("Problem in RENAME_CLASSES in the config file. Each keys in dictionary should be string. Problematic: " + str(key))
                    
                if isinstance (self.Configs["RENAME_CLASSES"][key],basestring):
                    x = self.Configs["RENAME_CLASSES"][key].lower()
                    if (not x in self.__DO_NOT_SET_ME["CLASSES"]["Negative"]) and (not x in self.__DO_NOT_SET_ME["CLASSES"]["Positive"]):
                        self.PROGRAM_Halt ("Problem in RENAME_CLASSES in the config file. Value should belong to defined positive or negative classes. Problematic: " + x); 
                    temp_rename_class[key.lower()] = x
                    
                elif isinstance(self.Configs["RENAME_CLASSES"][key],list):
                    allvalues = []
                    for x in self.Configs["RENAME_CLASSES"][key]:
                        x = x.lower()
                        if (not x in self.__DO_NOT_SET_ME["CLASSES"]["Negative"]) and (not x in self.__DO_NOT_SET_ME["CLASSES"]["Positive"]):
                            self.PROGRAM_Halt ("Problem in RENAME_CLASSES in the config file. Value should belong to defined positive or negative classes. Problematic: " + x); 
                        allvalues.append(x)
                    temp_rename_class[key.lower()] = allvalues

                else:
                    self.PROGRAM_Halt ("RENAME_CLASSES in the config file should be a dictionary, each value should be string or list of strings")
                    
            self.__DO_NOT_SET_ME["RENAME_CLASSES"] = temp_rename_class
            self.lp (["-"*80 , "[WARNING]: RENAMING RELATIONS INTO OTHER RELATIONS:" , str(self.__DO_NOT_SET_ME["RENAME_CLASSES"]) , "-"*80])
        #<<<CRITICAL>>>
        """
        # - OneHotEncodingForMultiClass: is used for real classification and prediction and creating the softmax columns. 
                   If we have 10 classes in total, and define 3 classes (i.e., "a","b","c") as Negative in the config file, 
                   the other 7 will be regarded as positive, and will have 8 columns in the softmax. Index 0 in the softmax
                   will be always for negative label(S). This has the artificial name "negative". 
                   
                   
                   1) Function: ProcessRoot in Preprocessing.py file:
                   ----------------------------------------------------------
                   if pair_type in self.Configs["CLASSES"]["Negative"]:
                       positive=False;
                       class_tp=None ;
                   elif pair_type in self.Configs["CLASSES"]["Positive"]:
                       positive=True;
                       class_tp=pair_type ; 
                   else:
                       self.PROGRAM_Halt ("Unknown class type for interaction:" + pair_type + "\n" + str(pair_attrib)); 



                   2) Function: Create_FeatureMatrix in NetworkInputGeneration.py file:
                   ----------------------------------------------------------
                    HowManyColumnsForOneHotEncoding = len (self.Configs["OneHotEncodingForMultiClass"]); 
                    y = np.zeros ((Total_Example_CNT, HowManyColumnsForOneHotEncoding),dtype=np.int16); 

                    ....
                    
                    if self.Configs["ClassificationType"]== "binary":
                        y [seen_pair_count] = 1 if (pair["POSITIVE"]==True) else 0 ; 
                    else: 
                        if pair["POSITIVE"]==False:
                            y[seen_pair_count,0]=1;#index zero is always for negative class(ES)!!!
                        else:
                            OneHotIndex = self.Configs["OneHotEncodingForMultiClass"][pair["CLASS_TP"]]; 
                            y[seen_pair_count, OneHotIndex] = 1 ;
        
                   3) Function __Evaluate in RelationExtractionPipeline.py:
                   ----------------------------------------------------------
                   USes for evaluation.
                  
        #- WRITEBACK_OneHotEncodingForMultiClass:
                  Like above, but this is used for writing back the prediction results into XML file. 
                  <<<CRITICAL>>>:
                  ALL negative predictions will be written with the negative class label of index 0 in list of "Negative" in the config file.
                  So:

                  "CLASSES" : 
                          {  "Negative" : ["neg" , "d"],   
                             "Positive" : ["a","b",c"]
                          }    
                  ---> ALL NEGATIVE PREDICTIONS WILL GET "neg" class label.


                  "CLASSES" : 
                          {  "Negative" : ["d" , "neg"],   
                             "Positive" : ["a","b",c"]
                          }    
                  ---> ALL NEGATIVE PREDICTIONS WILL GET "d" class label.
        """
        
        FIRSTneg = N[0]
        OneHotEncodingForMultiClass = {u"negative":0};
        WRITEBACK_OneHotEncodingForMultiClass = {FIRSTneg:0};
        for i, j in enumerate (sorted(P)):
            OneHotEncodingForMultiClass[j.lower()] = i+1 ;
            WRITEBACK_OneHotEncodingForMultiClass[j] = i+1 ;
        self.__DO_NOT_SET_ME["OneHotEncodingForMultiClass"] = OneHotEncodingForMultiClass ; 
        self.__DO_NOT_SET_ME["WRITEBACK_OneHotEncodingForMultiClass"] = WRITEBACK_OneHotEncodingForMultiClass ; 
        
        #Coarse class labels 
        #Example: Cause_Effect(e1,e2) and Cause_Effect(e2,e1) ==> Cause_Effect
        #First get list, then use SET (to avoird duplicates), then list and sorted. 
        Coarse_Classes = sorted(list(set([class_tp.split("(e1,e2)")[0].split("(e2,e1)")[0] for class_tp in self.__DO_NOT_SET_ME["CLASSES"]["Positive"]])));
        OneHotEncodingForCoarseMultiClass = {u"negative":0};
        for i, j in enumerate(Coarse_Classes):
            OneHotEncodingForCoarseMultiClass[j.lower()] = i+1 ;
        self.__DO_NOT_SET_ME["OneHotEncodingForCoarseMultiClass"] = OneHotEncodingForCoarseMultiClass ; 
            
        #2: ClassificationType
        if not "ClassificationType" in self.Configs:
            self.PROGRAM_Halt ("Missing Section: ClassificationType (should be either 'Binary' or 'Multiclass'."); 
        if not self.Configs["ClassificationType"].lower() in ['binary','multiclass']:
            self.PROGRAM_Halt ("Missing Section: ClassificationType (should be either 'Binary' or 'Multiclass'. GIVEN:" + str(self.Configs["ClassificationType"])); 
        self.__DO_NOT_SET_ME["ClassificationType"] = self.Configs["ClassificationType"].lower(); # <<<CRITICAL>>> LOWER CLASSIFICATION TYPE
        
        #3: ExampleGeneration
        if not "ExampleGeneration" in self.Configs:
            self.PROGRAM_Halt ("Missing ExampleGeneration dictionary in the config file."); 
        
        """
        if not "HaltIfNoSDP" in self.Configs["ExampleGeneration"]:
            self.PROGRAM_Halt ("Missing bool HaltIfNoSDP in ExampleGeneration dictionary in the config file."); 
        if not isinstance (self.Configs["ExampleGeneration"]["HaltIfNoSDP"], bool):
            self.PROGRAM_Halt ("HaltIfNoSDP in the ExampleGeneration dictionary in the config file should be either true or false."); 

        if not "SDP_DIRECTION" in self.Configs["ExampleGeneration"]:
            self.PROGRAM_Halt ("Missing string SDP_DIRECTION in ExampleGeneration dictionary in the config file."); 
        if not isinstance (self.Configs["ExampleGeneration"]["SDP_DIRECTION"], unicode):
            self.PROGRAM_Halt ("SDP_DIRECTION in ExampleGeneration dictionary in the config file should be string."); 
        SDP_DIRECTION = self.Configs["ExampleGeneration"]["SDP_DIRECTION"].lower(); 
        if not SDP_DIRECTION in ["from_e1value_to_e2value" , "from_e2value_to_e1value" , "from_firstoccurring_to_second" , "from_secondoccurring_to_first"]:
            self.PROGRAM_Halt ("SDP_DIRECTION in ExampleGeneration dictionary in the config file should be one of 'from_e1value_to_e2value' , 'from_e2value_to_e1value' , 'from_firstoccurring_to_second' , 'from_secondoccurring_to_first'."); 
        self.__DO_NOT_SET_ME["ExampleGeneration"]["SDP_DIRECTION"] = SDP_DIRECTION ; 
        
        
        if not "Generate_Reversed_SDP_Features" in self.Configs["ExampleGeneration"]:
            self.PROGRAM_Halt ("Missing boolean Generate_Reversed_SDP_Features in ExampleGeneration dictionary in the config file."); 
        if not isinstance (self.Configs["ExampleGeneration"]["Generate_Reversed_SDP_Features"], bool):
            self.PROGRAM_Halt ("Generate_Reversed_SDP_Features in ExampleGeneration dictionary in the config file should be bool."); 
        
        if not "SDP_MAXLEN_BECAREFUL" in self.Configs["ExampleGeneration"]:
            self.__DO_NOT_SET_ME["ExampleGeneration"]["SDP_MAXLEN_BECAREFUL"] = None ; 
            self.lp ("[INFO]: SDP_MAXLEN_BECAREFUL is ignored. SDP will have length as max of bags.")
        else:
            if (not isinstance(self.Configs["ExampleGeneration"]["SDP_MAXLEN_BECAREFUL"], int)) or (self.Configs["ExampleGeneration"]["SDP_MAXLEN_BECAREFUL"] <= 1):
                self.PROGRAM_Halt ("SDP_MAXLEN_BECAREFUL in ExampleGeneration dictionary in the config file should be int and > 1."); 
        
        if not "Directional_Dependency_Types" in self.Configs["ExampleGeneration"]:
            self.PROGRAM_Halt ("Missing boolean Directional_Dependency_Types in ExampleGeneration dictionary in the config file."); 
        else:
            if (not isinstance(self.Configs["ExampleGeneration"]["Directional_Dependency_Types"], bool)):
                self.PROGRAM_Halt ("Directional_Dependency_Types in ExampleGeneration dictionary in the config file should be either true or false."); 

        if not "Use_General_prep_prepc_conj_DT" in self.Configs["ExampleGeneration"]:
            self.PROGRAM_Halt ("Missing boolean Use_General_prep_prepc_conj_DT in ExampleGeneration dictionary in the config file."); 
        else:
            if (not isinstance(self.Configs["ExampleGeneration"]["Use_General_prep_prepc_conj_DT"], bool)):
                self.PROGRAM_Halt ("Use_General_prep_prepc_conj_DT in ExampleGeneration dictionary in the config file should be either true or false."); 

        """
        
        #ActionON_CrossSentenceExamples: (1)Halt (2)Discard
        if not "ActionON_CrossSentenceExamples" in self.Configs["ExampleGeneration"]:
            self.PROGRAM_Halt ("Missing string ActionON_CrossSentenceExamples in ExampleGeneration dictionary in the config file."); 
        else:
            if (not isinstance(self.Configs["ExampleGeneration"]["ActionON_CrossSentenceExamples"], unicode)):
                self.PROGRAM_Halt ("ActionON_CrossSentenceExamples in ExampleGeneration dictionary in the config file should be STRING and either 'Halt' or 'Discard'."); 

            self.Configs["ExampleGeneration"]["ActionON_CrossSentenceExamples"] = self.Configs["ExampleGeneration"]["ActionON_CrossSentenceExamples"].upper()
            if not (self.Configs["ExampleGeneration"]["ActionON_CrossSentenceExamples"] in ["HALT" , "DISCARD"]):
                self.PROGRAM_Halt ("ActionON_CrossSentenceExamples in ExampleGeneration dictionary in the config file should be either 'Halt' or 'Discard'."); 

            if self.Configs["ExampleGeneration"]["ActionON_CrossSentenceExamples"] == "DISCARD":
                self.lp (["*"*40 , "*"*40 ,"*"*40 , "[WARNING]: DISCARDING ALL CROSS-SENTECE RELATIONS IF THERE IS ANY !!!" , "*" *40, "*"*40 ,"*"*40]) ; 


        #ActionON_MissingRelations: (1)Halt (2)GenerateAsNegatives
        if not "ActionON_MissingRelations" in self.Configs["ExampleGeneration"]:
            self.PROGRAM_Halt ("Missing string ActionON_MissingRelations in ExampleGeneration dictionary in the config file."); 
        else:
            if (not isinstance(self.Configs["ExampleGeneration"]["ActionON_MissingRelations"], unicode)):
                self.PROGRAM_Halt ("ActionON_MissingRelations in ExampleGeneration dictionary in the config file should be STRING and either 'Halt' or 'GenerateAsNegatives'."); 

            self.Configs["ExampleGeneration"]["ActionON_MissingRelations"] = self.Configs["ExampleGeneration"]["ActionON_MissingRelations"].upper()
            if not (self.Configs["ExampleGeneration"]["ActionON_MissingRelations"] in ["HALT" , "GENERATEASNEGATIVES"]):
                self.PROGRAM_Halt ("ActionON_MissingRelations in ExampleGeneration dictionary in the config file should be either 'Halt' or 'GenerateAsNegatives'."); 

            if self.Configs["ExampleGeneration"]["ActionON_MissingRelations"] == "GENERATEASNEGATIVES":
                self.lp (["*"*40,"*"*40,"*"*40, "[WARNING]: Missing Relations will be generated as Negatives !!!" ,"*"*40 ,"*"*40,"*" *40]); 


        #ActionON_DuplicateRelations
        if not "ActionON_DuplicateRelations" in self.Configs["ExampleGeneration"]:
            self.PROGRAM_Halt ("Missing string ActionON_DuplicateRelations in ExampleGeneration dictionary in the config file."); 
        else:
            if (not isinstance(self.Configs["ExampleGeneration"]["ActionON_DuplicateRelations"], unicode)):
                self.PROGRAM_Halt ("ActionON_DuplicateRelations in ExampleGeneration dictionary in the config file should be string and either 'Halt', 'Ignore', or 'Discard'."); 

            self.Configs["ExampleGeneration"]["ActionON_DuplicateRelations"] = self.Configs["ExampleGeneration"]["ActionON_DuplicateRelations"].upper()
            if not (self.Configs["ExampleGeneration"]["ActionON_DuplicateRelations"] in ["HALT" , "IGNORE" , "DISCARD"]):
                self.PROGRAM_Halt ("ActionON_MissingRelations in ExampleGeneration dictionary in the config file should be either 'Halt' or 'Ignore', or 'Discard'."); 

            if self.Configs["ExampleGeneration"]["ActionON_MissingRelations"] == "DISCARD":
                self.lp (["*"*40,"*"*40,"*"*40, "[WARNING]: DISCARDING ANY DUPLICATE RELATIONS !!!" ,"*"*40 ,"*"*40,"*" *40]); 

            
        #4: ValidEnityTypesForRelations
        if not "ValidEnityTypesForRelations" in self.Configs:
            self.PROGRAM_Halt ("Missing ValidEnityTypesForRelations dictionary in the config file."); 
        self.__DO_NOT_SET_ME["ValidEnityTypesForRelations"] = set ([i.lower() for i in self.Configs["ValidEnityTypesForRelations"]]); #<<<CRITICAL>>> LOWER

        OneHotEncodingForValidEnityTypesForRelations = {} ;
        for i , e_tp in enumerate(self.Configs["ValidEnityTypesForRelations"]):
            OneHotEncodingForValidEnityTypesForRelations[e_tp.lower()] = i ; 
        self.__DO_NOT_SET_ME["OneHotEncodingForValidEnityTypesForRelations"] = OneHotEncodingForValidEnityTypesForRelations ; 
        
        #5: InteractionElementName
        if not "InteractionElementName" in self.Configs:
            self.PROGRAM_Halt ("Missing InteractionElementName in the config file."); 
        if self.Configs["InteractionElementName"] == None:
            self.PROGRAM_Halt ("InteractionElementName in the config file should be either interaction or pair."); 
        if not self.Configs["InteractionElementName"].lower() in ['interaction','pair']:
            self.PROGRAM_Halt ("InteractionElementName in the config file should be either 'interaction' or 'pair'."); 
        self.__DO_NOT_SET_ME["InteractionElementName"] = self.Configs["InteractionElementName"].lower() ; #<<<CRITICAL>>> LOWER
            
        #6: InteractionElementClassAttributeName : in which attribute, class for interaction is given
        if not "InteractionElementClassAttributeName" in self.Configs:
            self.PROGRAM_Halt ("Missing InteractionElementClassAttributeName in the config file."); 
        if self.Configs["InteractionElementClassAttributeName"] == None:
            self.PROGRAM_Halt ("InteractionElementClassAttributeName in the config file should be either interaction or pair."); 
        if not self.Configs["InteractionElementClassAttributeName"].lower() in ['interaction','type']:
            self.PROGRAM_Halt ("InteractionElementClassAttributeName in the config file should be either 'interaction' or 'type'."); 
        self.__DO_NOT_SET_ME["InteractionElementClassAttributeName"] = self.Configs["InteractionElementClassAttributeName"].lower() ;
        
        #7: W2V
        if not "W2V_Model" in self.Configs:
            self.PROGRAM_Halt ("Missing W2V_Model dictionary in the config file."); 
        if not "Model_Address" in self.Configs["W2V_Model"]:
            self.PROGRAM_Halt ("Missing Model_Address in W2V_Model dictionary in config file.");
        if not "MaxWordsInMemory" in self.Configs["W2V_Model"]:
            self.PROGRAM_Halt ("Missing MaxWordsInMemory in W2V_Model dictionary in config file.");
        if not GF.FILE_CheckFileExists(self.Configs["W2V_Model"]["Model_Address"]):
            self.PROGRAM_Halt ("File address for W2V_Model is not valid: file not exists.");
        
        #8: Replace W2V vector of mentions with a better general W2V vector if mention not found in W2V model ...
        if "ReplaceVectorForEntityTypeIfTokenNotFound" in self.Configs["ExampleGeneration"]:
            VectorReplacementDict = {};
            for Entity_Type , ReplacementVector in self.Configs["ExampleGeneration"]["ReplaceVectorForEntityTypeIfTokenNotFound"]:
                VectorReplacementDict[Entity_Type.lower()] = ReplacementVector ;
            if len (VectorReplacementDict) > 0:
                self.lp (["REPLACING VECTORS FOR SOME ENTITIY TYPES IF NOT FOUND IN W2V Model" , str(VectorReplacementDict)]);
            self.__DO_NOT_SET_ME["ExampleGeneration"]["ReplaceVectorForEntityTypeIfTokenNotFound_Dict"]= VectorReplacementDict ; 
        else:
            self.__DO_NOT_SET_ME["ExampleGeneration"]["ReplaceVectorForEntityTypeIfTokenNotFound_Dict"]= {}; 
            
        
        #9: Check if ValidInteractingPairEntityTypes is given ...
        if not "ValidInteractingPairEntityTypes" in self.Configs:
            self.PROGRAM_Halt ("Missing ValidInteractingPairEntityTypes list in the config file."); 
        if self.Configs["ValidInteractingPairEntityTypes"] == None:
            self.PROGRAM_Halt ("ValidInteractingPairEntityTypes list is null in the config file."); 
        if len(self.Configs["ValidInteractingPairEntityTypes"]) < 1:
            self.PROGRAM_Halt ("ValidInteractingPairEntityTypes in the config file should be list with at least one pair."); 
        L = self.Configs["ValidInteractingPairEntityTypes"] ; 
        ListOf_ValidInteractingPairEntityTypes = [] ;  
        for EntityTypePair in L:
            if (not EntityTypePair[0].lower() in self.Configs["ValidEnityTypesForRelations"]) or \
               (not EntityTypePair[1].lower() in self.Configs["ValidEnityTypesForRelations"]) :  
                self.PROGRAM_Halt ("Invalid entity pairs for section ValidInteractingPairEntityTypes:" + str(EntityTypePair)); 
            ListOf_ValidInteractingPairEntityTypes.append ([EntityTypePair[0].lower(),EntityTypePair[1].lower()]);
            #Important comment out: 
            #    now we do not put both (e1tp,e2tp) and (e2tp,e1tp) here ...
            #    only preserve the original, so that we can create negatives according to this order for now ....
            #ListOf_ValidInteractingPairEntityTypes.append ([EntityTypePair[1].lower(),EntityTypePair[0].lower()]);
        self.__DO_NOT_SET_ME["ListOf_ValidInteractingPairEntityTypes"] = ListOf_ValidInteractingPairEntityTypes ; 
            
        #10: Can interact with itself: for example self-interacting proteins or drug ...
        if (not "SelfInteractingEntities" in self.Configs):
            self.PROGRAM_Halt ("Missing SelfInteractingEntities list in the config file. Set it to 'null' if you need nothing."); 
        if self.Configs["SelfInteractingEntities"] == None:
            self.__DO_NOT_SET_ME["SelfInteractingEntities"] = [] ; 
        else:
            L = [i.lower() for i in self.Configs["SelfInteractingEntities"]];
            for i in L:
                if not i in self.__DO_NOT_SET_ME["ValidEnityTypesForRelations"]:
                    self.PROGRAM_Halt ("A self-interacting entity type is defined in section SelfInteractingEntities, but not in ValidEnityTypesForRelations in Config file!"); 
                if not [i,i] in self.__DO_NOT_SET_ME["ListOf_ValidInteractingPairEntityTypes"]:
                    self.PROGRAM_Halt ("A self-interacting entity type is defined in section SelfInteractingEntities, but no relation in ValidInteractingPairEntityTypes in Config file!"); 
            self.__DO_NOT_SET_ME["SelfInteractingEntities"] = L ; 
            
        #11: RemoveSentenceIfNoParseExists
        if (not "RemoveSentenceIfNoParseExists" in self.Configs):
            self.PROGRAM_Halt ("Missing boolean RemoveSentenceIfNoParseExists in the config file."); 
        if (not isinstance (self.Configs["RemoveSentenceIfNoParseExists"] , bool)):
            self.PROGRAM_Halt ("RemoveSentenceIfNoParseExists in the config file should be either true or false."); 
            
        
        #12: Max Sentence Length
        if (not "MAX_SENTENCE_LENGTH" in self.Configs["ExampleGeneration"]):
            self.PROGRAM_Halt ("MAX_SENTENCE_LENGTH in ExampleGeneration should be either null or an integer bigger than zero in the config file."); 

        if self.Configs["ExampleGeneration"]["MAX_SENTENCE_LENGTH"] == None:
            self.Configs["ExampleGeneration"]["MAX_SENTENCE_LENGTH"] = -1 ;
        else:
            try:
                if isinstance (self.Configs["ExampleGeneration"]["MAX_SENTENCE_LENGTH"] , bool): raise Exception ("") ;  
                if not isinstance (self.Configs["ExampleGeneration"]["MAX_SENTENCE_LENGTH"] , int): raise Exception ("") ;  
                L = int (self.Configs["ExampleGeneration"]["MAX_SENTENCE_LENGTH"]) ; 
                if not (L>0): raise Exception ("") ; 
            except:
                self.PROGRAM_Halt ("MAX_SENTENCE_LENGTH in ExampleGeneration should be either null or an integer bigger than zero in the config file."); 
       
        #13: Runtime Parameters:
        if (not "ExecutionParameters" in self.Configs):
            self.PROGRAM_Halt ("Missing dictionary ExecutionParameters in the config file."); 
        if (not "DoNotAskAnyQuestions" in self.Configs["ExecutionParameters"]):
            self.PROGRAM_Halt ("Missing boolean DoNotAskAnyQuestions in ExecutionParameters dictionary in the config file."); 
        if not isinstance (self.Configs["ExecutionParameters"]["DoNotAskAnyQuestions"], bool):
            self.PROGRAM_Halt ("DoNotAskAnyQuestions in ExecutionParameters dictionary in the config file should be true/false."); 
        
        #14: Evaluation Parameters
        if (not "EvaluationParameters" in self.Configs):
            self.PROGRAM_Halt ("Missing dictionary EvaluationParameters in the config file."); 
        
        if (not "ExcludeClassLabelsList" in self.Configs["EvaluationParameters"]):
            self.PROGRAM_Halt ("Missing list ExcludeClassLabelsList in EvaluationParameters dictionary in the config file."); 
        if not isinstance (self.Configs["EvaluationParameters"]["ExcludeClassLabelsList"], list):
            self.PROGRAM_Halt ("ExcludeClassLabelsList in EvaluationParameters dictionary in the config file should be a list. Put [] if you don't want to exclude anything."); 
        self.Configs["EvaluationParameters"]["ExcludeClassLabelsList"] = [i.lower() for i in self.Configs["EvaluationParameters"]["ExcludeClassLabelsList"]]; 
        if len (self.Configs["EvaluationParameters"]["ExcludeClassLabelsList"]) > 0:
            ALL_CLASSES = self.Configs["CLASSES"]["Positive"] | self.Configs["CLASSES"]["Negative"] ; 
            for i in self.Configs["EvaluationParameters"]["ExcludeClassLabelsList"]:
                if not i in ALL_CLASSES:
                    self.PROGRAM_Halt (i + " class label is defined in [EvaluationParameters][ExcludeClassLabelsList] in the config file  but not defined as a valid class in the CLASSES dictionary."); 
            
        if (not "DecimalPoints" in self.Configs["EvaluationParameters"]):
            self.PROGRAM_Halt ("Missing integer DecimalPoints in EvaluationParameters dictionary in the config file."); 
        if not isinstance (self.Configs["EvaluationParameters"]["DecimalPoints"], int):
            self.PROGRAM_Halt ("DecimalPoints in EvaluationParameters dictionary in the config file should be a positive integer. Put 2 for default."); 
        if self.Configs["EvaluationParameters"]["DecimalPoints"] <=0 :
            self.PROGRAM_Halt ("DecimalPoints in EvaluationParameters dictionary in the config file should be a positive integer. Put 2 for default.");