Beispiel #1
0
def measure_fps(model_file):
    task = kpu.load(model_file)
    kpu.set_outputs(task, 0, 1, 1, 2)
    clock = time.clock()
    fps_ = []
    for i in range(20):
        img = sensor.snapshot()
        clock.tick()
        fmap = kpu.forward(task, img)
        lcd.display(img, oft=(0, 0))
        fps_.append(clock.fps())
    average_fps = sum(fps_) / len(fps_)
    print(average_fps)
    global fps_result
    fps_result = average_fps
    _ = kpu.deinit(task)
Beispiel #2
0
    def __init__(self, detector):

        self.object_detected = None
        self.FaceDetector = detector
        self.landmark_task = kpu.load(0x6BD000)

        a = kpu.set_outputs(self.landmark_task, 0, 1, 1, 10)
Beispiel #3
0
def inference(model_file):
    task = kpu.load(model_file)
    kpu.set_outputs(task, 0, 1, 1, 2)
    clock = time.clock()
    while (True):
        img = sensor.snapshot()
        clock.tick()
        fmap = kpu.forward(task, img)
        fps = clock.fps()
        plist = fmap[:]
        pmax = max(plist)
        max_index = plist.index(pmax)
        a = lcd.display(img, oft=(0, 0))
        lcd.draw_string(
            0, 128, "%.2f:%s                            " %
            (pmax, labels[max_index].strip()))
    _ = kpu.deinit(task)
Beispiel #4
0
def measure_latency(model_file):
    task = kpu.load(model_file)
    kpu.set_outputs(task, 0, 1, 1, 2)
    clock = time.clock()
    latency_ = []
    for i in range(20):
        img = sensor.snapshot()
        clock.tick()
        t1 = time.ticks_us()
        fmap = kpu.forward(task, img)
        t2 = time.ticks_diff(time.ticks_us(), t1) / 1000
        lcd.display(img, oft=(0, 0))
        latency_.append(t2)
    average_latency = sum(latency_) / len(latency_)
    print(average_latency)
    global latency_result
    latency_result = average_latency
    _ = kpu.deinit(task)
 def __init__(self, FileName, Label, bool=False):
     self.row = global_value.row
     global_value.row = global_value.row + 1
     self.percent = 0
     self.image_class = 0
     self.file_name = FileName
     self.labels = Label
     if bool:
         self.image_objects_task = kpu.load(self.file_name)
         a = kpu.set_outputs(self.image_objects_task, 0, 1, 1,
                             len(self.labels))
     else:
         pass
Beispiel #6
0
def init_kpu(threshold=0.3):
    classes = ["person"]
    task = kpu.load(
        0x300000
    )  #change to "/sd/name_of_the_model_file.kmodel" if loading from SD card
    a = kpu.set_outputs(
        task, 0, 7, 7, 30
    )  #the actual shape needs to match the last layer shape of your model(before Reshape)
    anchor = (0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282,
              3.52778, 9.77052, 9.16828)
    a = kpu.init_yolo2(
        task, threshold, 0.3, 5, anchor
    )  #tweak the second parameter if you're getting too many false positives
    return task
Beispiel #7
0
    def __init__(self):

        self.object_detected = None
        self.percent = 0

        self.classes = ['face']
        self.anchor = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658,
                       5.155437, 6.92275, 6.718375, 9.01025)
        self.x_center = 0
        self.y_center = 0

        self.object_detection_task = kpu.load(0x659000)
        a = kpu.set_outputs(self.object_detection_task, 0, 7, 7, 30)
        a = kpu.init_yolo2(self.object_detection_task, 0.1, 0.1, 5,
                           self.anchor)
Beispiel #8
0
 def __init__(self, FileName, Classes, Anchor, bool=False):
     self.row = global_value.row
     global_value.row = global_value.row + 1
     self.object_detected = None
     self.percent = 0
     self.file_name = FileName
     self.classes = Classes
     self.anchor = Anchor
     self.x_center = 0
     self.y_center = 0
     if bool:
         self.object_detected_task = kpu.load(self.file_name)
         a = kpu.set_outputs(self.object_detected_task, 0, 7, 7,
                             5 * (5 + len(self.classes)))
         a = kpu.init_yolo2(self.object_detected_task, 0.1, 0.3, 5,
                            self.anchor)
     else:
         pass
Beispiel #9
0
    def __init__(self, lm_detector):

        self.id = -1
        self.max_score = 0
        self.threshold = 85
        self.LandmarkDetector = lm_detector

        self.db = _read_db()
        offset_x = 0
        offset_y = -15
        self.dst_point = [(44 + offset_x, 59 + offset_y),
                          (84 + offset_x, 59 + offset_y),
                          (64 + offset_x, 82 + offset_y), (47 + offset_x, 105),
                          (81 + offset_x, 105)]

        self.img_face = image.Image(size=(128, 128))
        a = self.img_face.pix_to_ai()

        self.fe_task = kpu.load(0x708000)
        a = kpu.set_outputs(self.fe_task, 0, 1, 1, 128)
Beispiel #10
0
import sensor, image, lcd, time
import KPU as kpu

lcd.init()
lcd.rotation(2)

sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.set_vflip(1)
sensor.run(1)

clock = time.clock()
classes = ['u', 'us']
task = kpu.load(0x500000)
kpu.set_outputs(task, 0, 35, 7, 7)
anchor = (1.08, 1.19, 3.42, 4.41, 6.63, 11.38, 9.42, 5.11, 16.62, 10.52)
a = kpu.init_yolo2(task, 0.5, 0.3, 5, anchor)
while (True):
    clock.tick()
    img = sensor.snapshot()
    objects = kpu.run_yolo2(task, img)
    print(clock.fps())
    if objects:
        for obj in objects:
            img.draw_rectangle(obj.rect(), color=(0, 255, 0), thickness=3)
            img.draw_string(obj.x(),
                            obj.y(),
                            classes[obj.classid()],
                            color=(0, 255, 0),
                            scale=2)
Beispiel #11
0
          6.718375, 9.01025)
a = kpu.init_yolo2(task, 0.5, 0.3, 5, anchor)

while (True):
    img = sensor.snapshot()
    code = kpu.run_yolo2(task, img)
    if code:
        for i in code:
            xx = i.x() - 10
            yy = i.y() - 10
            ww = i.w() + 15
            hh = i.h() + 10
            face_cut = img.cut(xx, yy, ww, hh)
            face_cut = face_cut.resize(128, 128)
            a = face_cut.pix_to_ai()
            a = kpu.set_outputs(tid, 0, 1, 1, 2)
            fmap = kpu.forward(tid, face_cut)
            plist = fmap[:]
            pmax = max(plist)
            max_index = plist.index(pmax)
            print(plist)

            if plist[0] >= 0.94:
                a = img.draw_rectangle(xx,
                                       yy,
                                       ww,
                                       hh,
                                       color=(255, 0, 0),
                                       thickness=4)
            elif plist[1] >= 0.98:
                a = img.draw_rectangle(xx,
Beispiel #12
0
#setup LCD screen
lcd.init()
lcd.rotation(2)

#read label file
f=open("labels.txt","r")
labels=f.readlines()
f.close()

#setup CNN
task = kpu.load(0x200000)

#Kmodel V4 need set output shape manually
#set_outputs(int idx, int w, int h, int ch)
kpu.set_outputs(task,0,6,1,1)

timep = 0
while(True):
    fps = 1000/(time.ticks_ms() - timep)
    timep = time.ticks_ms()

    img = sensor.snapshot()

    img = img.resize(224,224)
    a = img.pix_to_ai()

    fmap = kpu.forward(task,img)
    plist = fmap[:]
    pmax = max(plist)
    max_index = plist.index(pmax)
Beispiel #13
0
    if (current_time - btn_time) >= 500:
        btn_time = time.ticks()


fm.register(8, fm.fpioa.GPIOHS0)
btn = GPIO(GPIO.GPIOHS0, GPIO.IN)

lcd.init()
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.run(1)
task = kpu.load(
    0x500000)  # you need put model(face.kfpkg) in flash at address 0x500000
# task = kpu.load("/sd/face.kmodel")
a = kpu.set_outputs(task, 0, 20, 15, 30)
anchor = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658, 5.155437, 6.92275,
          6.718375, 9.01025)
a = kpu.init_yolo2(task, 0.5, 0.3, 5, anchor)
while (True):
    btn.irq(btn_function, GPIO.IRQ_RISING)
    img = sensor.snapshot()
    code = kpu.run_yolo2(task, img)
    if code:
        for i in code:
            print(i)
            a = img.draw_rectangle(i.rect())
            pos(i.x() + i.w() / 2, i.y() + i.h() / 2)
    a = lcd.display(img)
a = kpu.deinit(task)
def append_dataset(file_name,data):
    face_dataset.append(data)
    f = open(file_name,"a")
    str_list_target = ["{:0.4f}".format(x) for x in data]
    str_target = ','.join(str_list_target)
    f.write(str_target)
    f.close()
    print("save to dataset success")

def send_sheet(face_id):
    return

#=== AI Models ===#
task_face_detect = kpu.load(0x200000)
task_face_encode = kpu.load(0x300000)
kpu.set_outputs(task_face_encode,0,1,1,128)
anchor = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658, 5.155437, 6.92275, 6.718375, 9.01025)
kpu.init_yolo2(task_face_detect, 0.5, 0.3, 5, anchor)

#====== config ======#
face_threshold = 15
dataset_filename = "faces.csv"
#====================#

#=== SETUP ===#
#clear_dataset(dataset_filename,face_dataset)
face_dataset = read_dataset(dataset_filename);
corgi85.IFTTT_init("corgi_detect","0hI55mQkUiimG6RIjpWhp")

#=== wait wifi connect ===#
while corgi85.wifi_check() == 0:
Beispiel #15
0
import uos
import time
lcd.init()
lcd.rotation(2)
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.set_windowing((224, 224))
#sensor.set_vflip(1)
sensor.run(1)

classes = ["sakura"]
print(uos.listdir("/sd/") )

task = kpu.load("/sd/sakura_model_v01.kmodel")
kpu.set_outputs(task, 0,7,7,30)#Reshape層の内容に応じて中身を変える必要がある #the actual shape needs to match the last layer shape of your model(before Reshape)

anchor = (0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828)
kpu.init_yolo2(task, 0.3, 0.3, 5, anchor)
#kpu.init_yolo2(task, 0.8, 0.9, 5, anchor)
print("start")
code=""
while(True):
    img = sensor.snapshot()#.rotation_corr(z_rotation=90.0)
    #a = img.pix_to_ai()
    code = kpu.run_yolo2(task, img)
    if code:
        for i in code:
            a=img.draw_rectangle(i.rect(),color = (0, 255, 0))
            a = img.draw_string(i.x(),i.y(), classes[i.classid()], color=(255,0,0), scale=3)
        a = lcd.display(img)
Beispiel #16
0
sensor.run(1)

# Init KPU
print("init KPU")
lcd.draw_string(10, 5, "init kpu")
lcd.draw_string(170, 5, "Running")

lcd.draw_string(10, 20, "load kmodel")
kpu.memtest()
task = kpu.load(0x600000)
lcd.draw_string(170, 20, "Done")

lcd.draw_string(10, 35, "set outputs")

lcd.draw_string(10, 50, "steer")
load_state = kpu.set_outputs(task, 0, 1, 1, 20)
lcd.draw_string(150, 50, ("Done" if load_state is True else "None"))

lcd.draw_string(10, 65, "throttle")
load_state = kpu.set_outputs(task, 1, 1, 1, 16)
lcd.draw_string(150, 65, ("Done" if load_state is True else "None"))

kpu.memtest()
lcd.draw_string(170, 35, "Done")

print("Done")
time.sleep_ms(1000)
lcd.draw_string(170, 5, "Done     ")
time.sleep_ms(500)
lcd.draw_string(60, 119, "Setup Done! :)")
Beispiel #17
0
import sensor, image, lcd, time
import KPU as kpu
sensor.reset(freq=24000000, dual_buff=True)
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.set_windowing((320, 224))
sensor.set_vflip(1)
sensor.run(1)
lcd.init(type=2, freq=20000000, color=lcd.BLACK)
#lcd.rotation(2)
classes = ["license_plate"]
task = kpu.load(0x400000)
a = kpu.set_outputs(task, 0, 10, 7, 30)
anchor = (1.81, 0.85, 2.26, 1.07, 3.00, 1.46, 4.56, 1.95, 7.38, 3.45)
a = kpu.init_yolo2(task, 0.3, 0.3, 5, anchor)
while (True):
    timestamp = time.ticks_ms()
    img = sensor.snapshot()
    a = img.pix_to_ai()
    plates = kpu.run_yolo2(task, img)
    if plates:
        plate = plates[0]
        a = img.draw_rectangle(plate.rect(), color=(0, 255, 0), thickness=5)
    a = img.draw_string(70,
                        10,
                        "FPS : %.2f" % (1000 / (time.ticks_ms() - timestamp)),
                        color=(0, 255, 0),
                        scale=2)
    a = lcd.display(img)
a = kpu.deinit(task)
import sensor, image, time, lcd
import KPU as kpu

lcd.init(freq=15000000)
sensor.reset()                      # Reset and initialize the sensor. It will
                                    # run automatically, call sensor.run(0) to stop
sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA)   # Set frame size to QVGA (320x240)
sensor.set_windowing((224, 224))
sensor.skip_frames(time = 2000)     # Wait for settings take effect.
sensor.set_vflip(1)
sensor.set_hmirror(1)
clock = time.clock()                # Create a clock object to track the FPS.
task = kpu.load(0x300000) # mnist
a=kpu.set_outputs(task, 0, 1, 1, 2)

while(True):
    clock.tick()                    # Update the FPS clock.
    img = sensor.snapshot()         # Take a picture and return the image.
    #img.invert() # Use with numbers in paper
    img_3 = img.resize(128, 128)

    a = img_3.pix_to_ai()
    fmap = kpu.forward(task, img_3)
    plist = fmap[:]
    pmax = max(plist)
    max_index = plist.index(pmax)
    #img.draw_string(5, 5, ('%s' % (max_index)), color = (255, 255, 255), scale = 2)
    lcd.display(img)                # Display on LCD
    #print("%d: %.3f" % (max_index, pmax))
    print(plist)
Beispiel #19
0
import sensor, image, lcd, time
import KPU as kpu

sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.set_windowing((224, 224))
sensor.set_vflip(1)
sensor.run(1)
lcd.init(type=2, freq=20000000, color=lcd.BLACK)
lcd.rotation(2)
clock = time.clock()
classes = ['face', 'eye']
task = kpu.load(0x400000)
a = kpu.set_outputs(task, 0, 7, 7, 35)
anchor = (0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282,
          3.52778, 9.77052, 9.16828)
a = kpu.init_yolo2(task, 0.5, 0.3, 5, anchor)
while (True):
    img = sensor.snapshot()
    #a= img.resize(224,224)
    a = img.pix_to_ai()
    code = kpu.run_yolo2(task, img)
    if code:
        for i in code:
            a = img.draw_rectangle(i.rect(), color=(0, 255, 0), thickness=4)
    a = lcd.display(img)

a = kpu.deinit(task)
Beispiel #20
0
sensor.set_framesize(
    sensor.QVGA)  # Establece la captura de imagen como QVGA (320x240)
sensor.set_windowing(
    (224, 224))  # Establece el tamaño de imagen con el que se entreno la red
sensor.set_vflip(1)  # Rotación vertical de la imagen
sensor.set_saturation(-3)  # Saturacion
sensor.set_brightness(-3)  # brightness
sensor.set_contrast(-3)  # contrast
lcd.clear()  # Limpia la pantalla y la deja en negro

# Descripción y carga del modelo
labels = ['Acaro', 'Bueno',
          'Manchado']  # Etiquetas de la ultima capa de la red
task = kpu.load(
    '/sd/3clases.kmodel')  # Acá va al ubicación del archivo .kmodel   (CARGA)
kpu.set_outputs(task, 0, 1, 1,
                3)  # Aqúi van las dimensiones de la ultima capa de la red

while (True):

    tick1 = utime.ticks_ms()

    # Ejecucion del modelo en tiempo real
    kpu.memtest()  # Verifica la memoria disponible
    img = sensor.snapshot()  # Captura de la imagen
    fmap = kpu.forward(task,
                       img)  # Ejecuta la red neuronal con la imagen capturada
    plist = fmap[:]  # Extrae las probabilidades dentro de una lista
    pmax = max(plist)  # Escoge de las probabilidades la mayor
    max_index = plist.index(
        pmax)  # Extrae el indice de la clase con la mayor probabilidad
Beispiel #21
0
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.set_windowing((224, 224))
sensor.set_vflip(1)
lcd.clear()

labels = [
    'arduino_uno', 'santa_claus'
]  #number of labels should match the number of labels the model was trained with

task = kpu.load(
    0x200000
)  #change to "/sd/name_of_the_model_file.kmodel" if loading from SD card
kpu.set_outputs(
    task, 0, 1, 1,
    2)  #the actual shape needs to match the last layer shape of your model

while (True):
    kpu.memtest()
    img = sensor.snapshot()
    #img = img.rotation_corr(z_rotation=90.0)   uncomment if need rotation correction - only present in full maixpy firmware
    a = img.pix_to_ai()
    fmap = kpu.forward(task, img)
    plist = fmap[:]
    pmax = max(plist)
    max_index = plist.index(pmax)
    a = img.draw_string(0,
                        0,
                        str(labels[max_index].strip()),
                        color=(255, 0, 0),
Beispiel #22
0
tinyYolo = "/sd/models/tinyYoloMerged.kmodel"  #16 fps
mbnet75 = "/sd/models/mbnet75Merged.kmodel"  #12 fps
mbnet50 = "/sd/models/mbnet50Merged.kmodel"  #15fps
mbnet25 = "/sd/models/mbnet25Merged.kmodel"  #16fps

task = kpu.load(mbnet50)

try:
    kpu.netinfo(task)
except:
    print("cannot get net info, kmodel v4 not supported for netinfo!")

lastLayerShape = (len(classes) + 5) * 5
#from documentation Kmodel V4 need set output shape manually
a = kpu.set_outputs(task, 0, 7, 7, lastLayerShape)
anchor = (0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282,
          3.52778, 9.77052, 9.16828)  #yolo v2 tiny


def doOverlap(boxDict, box1Dict):
    box = boxDict['rect']
    box1 = box1Dict['rect']
    print("checking overlapping boxes:", box, " ", box1)
    box_x = box[0]
    box_y = box[1]
    box_x2 = box[0] + box[2]
    box_y2 = box[1] + box[3]

    box1_x = box1[0]
    box1_y = box1[1]
Scale = 2
sensor.set_windowing((window_height, window_width))
sensor.skip_frames(100)
sensor.run(1)

print("init kpu")
lcd.draw_string(10, 10, "init kpu")
lcd.draw_string(170, 10, "Running")

lcd.draw_string(10, 30, "load kmodel")
kpu.memtest()
task = kpu.load(0x500000)
lcd.draw_string(170, 30, "Done")

lcd.draw_string(10, 50, "set outputs")
fmap = kpu.set_outputs(task, 0, window_height, window_width, classes)
kpu.memtest()
lcd.draw_string(170, 50, "Done")

print("Done")
time.sleep_ms(1000)
lcd.draw_string(170, 10, "Done     ")
time.sleep_ms(500)
lcd.draw_string(60, 70, "Setup Done! :)")
clock = time.clock()

seg_img = image.Image()
output_array = np.array([0, 0, 0, 0, 0])
color_dict = {0: (0, 0, 0),  # 0 in VOC2012 BG,VOid
              1: (192, 0, 0),  # 9 in VOC2012 CHAIR, SOFA
              2: (64, 128, 0),  # 11 in VOC2012 TABLE
sensor.set_pixformat(
    sensor.RGB565)  # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA)  # Set frame size to QVGA (320x240)
#sensor.set_windowing((320, 240))
sensor.skip_frames(time=2000)  # Wait for settings take effect.
sensor.set_vflip(1)
sensor.set_hmirror(1)
clock = time.clock()  # Create a clock object to track the FPS.

print('loading face detect model')
task_detect_face = kpu.load(0x300000)  # Charge face detect model into KPU
print('loading face expresion classify model')
task_classify_face = kpu.load(
    0x500000)  # Charge face classification model into KPU

a = kpu.set_outputs(task_classify_face, 0, 1, 1, 2)

anchor = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658, 5.155437, 6.92275,
          6.718375, 9.01025)
a = kpu.init_yolo2(task_detect_face, 0.5, 0.3, 5, anchor)

labels = ['happy', 'sad']  # Facial expression labels

print('configuration complete')

while (True):
    clock.tick()  # Update the FPS clock.
    img = sensor.snapshot()  # Take a picture and return the image.
    detected_face = kpu.run_yolo2(task_detect_face, img)

    if detected_face:
Beispiel #25
0
import KPU as kpu

task = kpu.load(0x400000)
kpu.set_outputs(task, 0, 1,3,1)


info = kpu.netinfo(task)
layerbottom = info[-1]

print(info, layerbottom)
Beispiel #26
0
    return data_packet


#classes = ["smallfish","mebaru","azi","hugu","ishidai","kasago","bera","kawahagi","tai","hamati","kurodai","kisu","gure","sayori","suzuki"]
classes = ["sakura"]
print(uos.listdir("/sd/"))

# KPU setting
#kpu.deinit(task)
try:
    task = kpu.load(modelpath)
except:
    kpu.deinit(task)
    task = kpu.load(modelpath)
#kpu.set_outputs(task, 0,7,7,100)#Reshape層の内容に応じて中身を変える必要がある #the actual shape needs to match the last layer shape of your model(before Reshape)
kpu.set_outputs(task, 0, 7, 7, 30)
anchor = (0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282,
          3.52778, 9.77052, 9.16828)
kpu.init_yolo2(task, 0.3, 0.3, 5, anchor)

pic_filepath = "/sd/sakura_pic"
try:
    uos.mkdir(pic_filepath)
except:
    print(uos.listdir(pic_filepath))

cnt = 0
while (True):
    try:
        img = sensor.snapshot()
        code = kpu.run_yolo2(task, img)
i2c.scan()

# INITIALIZE CAMERA
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.run(1)

# INITIALIZE LCD
lcd.init()
lcd.rotation(2)
lcd.clear()

# INITIALIZE MODEL
task = kpu.load(0x200000) 
kpu.set_outputs(task, 0, 1, 1, 5)

# INITIALIZE FILE HANDLER
# 	create file and include column headers if file doesn't exist
if FILE_NAME not in os.listdir():
	with open(FILE_NAME, "w") as fout:
		column_headers = "name|contact_number|email|address|date_time|temperature|classification|confidence_level|cough_others|fever_others|headache_others|difficulty_breathing_others|cough|fever|headache|difficulty_breathing\n"
		fout.write(column_headers)

# create image directory if it doesn't exist
if IMAGE_DIRECTORY not in os.listdir(): 
	os.mkdir(IMAGE_DIRECTORY) 

# RESET WHEN WIFI OR SOCKET CONNECTION IS LOST
def reset():
	lcd.clear()
Beispiel #28
0
#tested with frimware 5-0.22
import sensor,image,lcd
import KPU as kpu

lcd.init()
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.set_windowing((224, 224))
sensor.set_vflip(1)
sensor.run(1)
classes = ["racoon"]
task = kpu.load(0x200000) #change to "/sd/name_of_the_model_file.kmodel" if loading from SD card
a = kpu.set_outputs(task, 0, 7,7,30)   #the actual shape needs to match the last layer shape of your model(before Reshape)
anchor = (0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828)
a = kpu.init_yolo2(task, 0.3, 0.3, 5, anchor) #tweak the second parameter if you're getting too many false positives
while(True):
    img = sensor.snapshot().rotation_corr(z_rotation=90.0)
    a = img.pix_to_ai()
    code = kpu.run_yolo2(task, img)
    if code:
        for i in code:
            a=img.draw_rectangle(i.rect(),color = (0, 255, 0))
            a = img.draw_string(i.x(),i.y(), classes[i.classid()], color=(255,0,0), scale=3)
        a = lcd.display(img)
    else:
        a = lcd.display(img)
a = kpu.deinit(task)
Beispiel #29
0
import os, image, time
import KPU as kpu

md = kpu.load(0x400000)
kpu.set_outputs(md, 0, 1, 3, 1)
img = image.Image("/sd/3.jpg")
print(img)
#img = img.rgb_to_grayscale()
img.pix_to_ai()
a = kpu.forward(md, img)
fmap = kpu.get_output(md, 0)
print("fmap", fmap[:])

#print(os.listdir())