Beispiel #1
0
def foo():
    m = 6
    mm = 5


    errL2u =np.zeros((m-1,1))
    errH1u =np.zeros((m-1,1))
    errL2p =np.zeros((m-1,1))
    errL2b =np.zeros((m-1,1))
    errCurlb =np.zeros((m-1,1))
    errL2r =np.zeros((m-1,1))
    errH1r =np.zeros((m-1,1))



    l2uorder =  np.zeros((m-1,1))
    H1uorder =np.zeros((m-1,1))
    l2porder =  np.zeros((m-1,1))
    l2border =  np.zeros((m-1,1))
    Curlborder =np.zeros((m-1,1))
    l2rorder =  np.zeros((m-1,1))
    H1rorder = np.zeros((m-1,1))

    NN = np.zeros((m-1,1))
    DoF = np.zeros((m-1,1))
    Velocitydim = np.zeros((m-1,1))
    Magneticdim = np.zeros((m-1,1))
    Pressuredim = np.zeros((m-1,1))
    Lagrangedim = np.zeros((m-1,1))
    Wdim = np.zeros((m-1,1))
    iterations = np.zeros((m-1,3*(mm-1)))
    SolTime = np.zeros((m-1,1))
    udiv = np.zeros((m-1,1))
    MU = np.zeros((m-1,1))
    level = np.zeros((m-1,1))
    NSave = np.zeros((m-1,1))
    Mave = np.zeros((m-1,1))
    TotalTime = np.zeros((m-1,1))
    KappaSave = np.zeros((mm-1,1))
    nn = 2

    dim = 2
    ShowResultPlots = 'yes'
    split = 'Linear'
    qq = -1
    MU[0]= 1e0
    kappa = 0.01
    qq = -1
    for yy in xrange(1,mm):
        kappa = kappa*10
        KappaSave[yy-1] = kappa
        IterTypes = ['Full','MD','CD']
        for kk in range(len(IterTypes)):
            qq += 1
            for xx in xrange(1,m):
                print xx
                level[xx-1] = xx+ 2
                nn = 2**(level[xx-1])



                # Create mesh and define function space
                nn = int(nn)
                NN[xx-1] = nn/2
                # parameters["form_compiler"]["quadrature_degree"] = 6
                # parameters = CP.ParameterSetup()
                mesh = UnitSquareMesh(nn,nn)

                order = 1
                parameters['reorder_dofs_serial'] = False
                Velocity = VectorFunctionSpace(mesh, "CG", order+1)
                Pressure = FunctionSpace(mesh, "CG", order)
                Magnetic = FunctionSpace(mesh, "N1curl", order)
                Lagrange = FunctionSpace(mesh, "CG", order)
                W = MixedFunctionSpace([Velocity, Pressure, Magnetic,Lagrange])
                # W = Velocity*Pressure*Magnetic*Lagrange
                Velocitydim[xx-1] = Velocity.dim()
                Pressuredim[xx-1] = Pressure.dim()
                Magneticdim[xx-1] = Magnetic.dim()
                Lagrangedim[xx-1] = Lagrange.dim()
                Wdim[xx-1] = W.dim()
                print "\n\nW:  ",Wdim[xx-1],"Velocity:  ",Velocitydim[xx-1],"Pressure:  ",Pressuredim[xx-1],"Magnetic:  ",Magneticdim[xx-1],"Lagrange:  ",Lagrangedim[xx-1],"\n\n"
                dim = [Velocity.dim(), Pressure.dim(), Magnetic.dim(), Lagrange.dim()]


                def boundary(x, on_boundary):
                    return on_boundary

                u0, p0,b0, r0, Laplacian, Advection, gradPres,CurlCurl, gradR, NS_Couple, M_Couple = ExactSol.MHD2D(4,1)


                bcu = DirichletBC(W.sub(0),u0, boundary)
                bcb = DirichletBC(W.sub(2),b0, boundary)
                bcr = DirichletBC(W.sub(3),r0, boundary)

                # bc = [u0,p0,b0,r0]
                bcs = [bcu,bcb,bcr]
                FSpaces = [Velocity,Pressure,Magnetic,Lagrange]


                (u, b, p, r) = TrialFunctions(W)
                (v, c, q, s) = TestFunctions(W)
                Mu_m =1e1
                MU = 1.0/1
            

                IterType = IterTypes[kk]
                Split = "No"
                Saddle = "No"
                Stokes = "No"

                F_NS = -MU*Laplacian+Advection+gradPres-kappa*NS_Couple
                if kappa == 0:
                    F_M = Mu_m*CurlCurl+gradR -kappa*M_Couple
                else:
                    F_M = Mu_m*kappa*CurlCurl+gradR -kappa*M_Couple
                params = [kappa,Mu_m,MU]


                # MO.PrintStr("Preconditioning MHD setup",5,"+","\n\n","\n\n")
                Hiptmairtol = 1e-5
                HiptmairMatrices = PrecondSetup.MagneticSetup(Magnetic, Lagrange, b0, r0, Hiptmairtol, params)


                MO.PrintStr("Setting up MHD initial guess",5,"+","\n\n","\n\n")
                u_k,p_k,b_k,r_k = common.InitialGuess(FSpaces,[u0,p0,b0,r0],[F_NS,F_M],params,HiptmairMatrices,1e-6,Neumann=Expression(("0","0")),options ="New", FS = "DG")
                #plot(p_k, interactive = True) 
                b_t = TrialFunction(Velocity)
                c_t = TestFunction(Velocity)
                #print assemble(inner(b,c)*dx).array().shape
                #print mat
                #ShiftedMass = assemble(inner(mat*b,c)*dx)
                #as_vector([inner(b,c)[0]*b_k[0],inner(b,c)[1]*(-b_k[1])])

                ones = Function(Pressure)
                ones.vector()[:]=(0*ones.vector().array()+1)
                # pConst = - assemble(p_k*dx)/assemble(ones*dx)
                p_k.vector()[:] += - assemble(p_k*dx)/assemble(ones*dx)
                x = Iter.u_prev(u_k,p_k,b_k,r_k)

                KSPlinearfluids, MatrixLinearFluids = PrecondSetup.FluidLinearSetup(Pressure, MU)
                kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k)
                #plot(b_k)

                ns,maxwell,CoupleTerm,Lmaxwell,Lns = forms.MHD2D(mesh, W,F_M,F_NS, u_k,b_k,params,IterType,"DG",Saddle,Stokes)
                RHSform = forms.PicardRHS(mesh, W, u_k, p_k, b_k, r_k, params,"DG",Saddle,Stokes)

                bcu = DirichletBC(Velocity,Expression(("0.0","0.0")), boundary)
                bcb = DirichletBC(Magnetic,Expression(("0.0","0.0")), boundary)
                bcr = DirichletBC(Lagrange,Expression(("0.0")), boundary)
                bcs = [bcu,bcb,bcr]
                
                parameters['linear_algebra_backend'] = 'uBLAS'
                SetupType = 'Matrix'
                BC = MHDsetup.BoundaryIndices(mesh)
                
                eps = 1.0           # error measure ||u-u_k||
                tol = 1.0E-4     # tolerance
                iter = 0            # iteration counter
                maxiter = 40       # max no of iterations allowed
                SolutionTime = 0
                outer = 0
                # parameters['linear_algebra_backend'] = 'uBLAS'

                # FSpaces = [Velocity,Magnetic,Pressure,Lagrange]

                if IterType == "CD":
                    MO.PrintStr("Setting up PETSc "+SetupType,2,"=","\n","\n")
                    Alin = MHDsetup.Assemble(W,ns,maxwell,CoupleTerm,Lns,Lmaxwell,RHSform,bcs+BC, "Linear",IterType)
                    Fnlin,b = MHDsetup.Assemble(W,ns,maxwell,CoupleTerm,Lns,Lmaxwell,RHSform,bcs+BC, "NonLinear",IterType)
                    A = Fnlin+Alin
                    A,b = MHDsetup.SystemAssemble(FSpaces,A,b,SetupType,IterType)
                    u = b.duplicate()


                u_is = PETSc.IS().createGeneral(range(Velocity.dim()))
                NS_is = PETSc.IS().createGeneral(range(Velocity.dim()+Pressure.dim()))
                M_is = PETSc.IS().createGeneral(range(Velocity.dim()+Pressure.dim(),W.dim()))
                OuterTol = 1e-5
                InnerTol = 1e-5
                NSits =0
                Mits =0
                TotalStart =time.time()
                SolutionTime = 0
                while eps > tol  and iter < maxiter:
                    iter += 1
                    MO.PrintStr("Iter "+str(iter),7,"=","\n\n","\n\n")
                    AssembleTime = time.time()
                    if IterType == "CD":
                        MO.StrTimePrint("MHD CD RHS assemble, time: ", time.time()-AssembleTime)
                        b = MHDsetup.Assemble(W,ns,maxwell,CoupleTerm,Lns,Lmaxwell,RHSform,bcs+BC, "CD",IterType)
                    else:

                        MO.PrintStr("Setting up PETSc "+SetupType,2,"=","\n","\n")

#                        if iter == 1:
#                            Alin = MHDsetup.Assemble(W,ns,maxwell,CoupleTerm,Lns,Lmaxwell,RHSform,bcs+BC, "Linear",IterType)
#                            Fnlin,b = MHDsetup.Assemble(W,ns,maxwell,CoupleTerm,Lns,Lmaxwell,RHSform,bcs+BC, "NonLinear",IterType)
#                            A = Fnlin+Alin
#                            A,b = MHDsetup.SystemAssemble(FSpaces,A,b,SetupType,IterType)
#                            u = b.duplicate()
#                        else: 
#                            Fnline,b = MHDsetup.Assemble(W,ns,maxwell,CoupleTerm,Lns,Lmaxwell,RHSform,bcs+BC, "NonLinear",IterType)
#                            A = Fnlin+Alin
#                            A,b = MHDsetup.SystemAssemble(FSpaces,A,b,SetupType,IterType)
                        AA, bb = assemble_system(maxwell+ns+CoupleTerm, (Lmaxwell + Lns) - RHSform,  bcs)
                        A,b = CP.Assemble(AA,bb)
                    # if iter == 1:
                    MO.StrTimePrint("MHD total assemble, time: ", time.time()-AssembleTime)
                    
                    u = b.duplicate()
                    #A,Q
                    kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k)
                    print "Inititial guess norm: ", u.norm()
                    if u.norm()>1e50:
                        iter = 10000
                        break
                    stime = time.time()
                    kspF = 0
                    u, mits,nsits = S.solve(A,b,u,params,W,'Direct',IterType,OuterTol,InnerTol,HiptmairMatrices,Hiptmairtol,KSPlinearfluids, Fp,kspF)
                    Soltime = time.time()- stime
                    Mits += mits
                    NSits += nsits
                    SolutionTime += Soltime
                    
                    u1, p1, b1, r1, eps= Iter.PicardToleranceDecouple(u,x,FSpaces,dim,"2",iter)
                    p1.vector()[:] += - assemble(p1*dx)/assemble(ones*dx)
                    u_k.assign(u1)
                    p_k.assign(p1)
                    b_k.assign(b1)
                    r_k.assign(r1)
                    uOld= np.concatenate((u_k.vector().array(),p_k.vector().array(),b_k.vector().array(),r_k.vector().array()), axis=0)
                    x = IO.arrayToVec(uOld)



                XX= np.concatenate((u_k.vector().array(),p_k.vector().array(),b_k.vector().array(),r_k.vector().array()), axis=0)

                iterations[xx-1,qq] = iter
                dim = [Velocity.dim(), Pressure.dim(), Magnetic.dim(),Lagrange.dim()]
    #
#        ExactSolution = [u0,p0,b0,r0]
#        errL2u[xx-1], errH1u[xx-1], errL2p[xx-1], errL2b[xx-1], errCurlb[xx-1], errL2r[xx-1], errH1r[xx-1] = Iter.Errors(XX,mesh,FSpaces,ExactSolution,order,dim, "DG")
#
#        if xx > 1:
#            l2uorder[xx-1] =  np.abs(np.log2(errL2u[xx-2]/errL2u[xx-1]))
#            H1uorder[xx-1] =  np.abs(np.log2(errH1u[xx-2]/errH1u[xx-1]))
#
#            l2porder[xx-1] =  np.abs(np.log2(errL2p[xx-2]/errL2p[xx-1]))
#
#            l2border[xx-1] =  np.abs(np.log2(errL2b[xx-2]/errL2b[xx-1]))
#            Curlborder[xx-1] =  np.abs(np.log2(errCurlb[xx-2]/errCurlb[xx-1]))
#
#            l2rorder[xx-1] =  np.abs(np.log2(errL2r[xx-2]/errL2r[xx-1]))
#            H1rorder[xx-1] =  np.abs(np.log2(errH1r[xx-2]/errH1r[xx-1]))
#
#
#
#
#    import pandas as pd
#
#
#
#    LatexTitles = ["l","DoFu","Dofp","V-L2","L2-order","V-H1","H1-order","P-L2","PL2-order"]
#    LatexValues = np.concatenate((level,Velocitydim,Pressuredim,errL2u,l2uorder,errH1u,H1uorder,errL2p,l2porder), axis=1)
#    LatexTable = pd.DataFrame(LatexValues, columns = LatexTitles)
#    pd.set_option('precision',3)
#    LatexTable = MO.PandasFormat(LatexTable,"V-L2","%2.4e")
#    LatexTable = MO.PandasFormat(LatexTable,'V-H1',"%2.4e")
#    LatexTable = MO.PandasFormat(LatexTable,"H1-order","%1.2f")
#    LatexTable = MO.PandasFormat(LatexTable,'L2-order',"%1.2f")
#    LatexTable = MO.PandasFormat(LatexTable,"P-L2","%2.4e")
#    LatexTable = MO.PandasFormat(LatexTable,'PL2-order',"%1.2f")
#    print LatexTable
#
#
#    print "\n\n   Magnetic convergence"
#    MagneticTitles = ["l","B DoF","R DoF","B-L2","L2-order","B-Curl","HCurl-order"]
#    MagneticValues = np.concatenate((level,Magneticdim,Lagrangedim,errL2b,l2border,errCurlb,Curlborder),axis=1)
#    MagneticTable= pd.DataFrame(MagneticValues, columns = MagneticTitles)
#    pd.set_option('precision',3)
#    MagneticTable = MO.PandasFormat(MagneticTable,"B-Curl","%2.4e")
#    MagneticTable = MO.PandasFormat(MagneticTable,'B-L2',"%2.4e")
#    MagneticTable = MO.PandasFormat(MagneticTable,"L2-order","%1.2f")
#    MagneticTable = MO.PandasFormat(MagneticTable,'HCurl-order',"%1.2f")
#    print MagneticTable
#



    import pandas as pd

    print iterations.shape[1]

    iter = ["P","MD","CD"]
    IterTitles = ["l","DoF"]
    for i in range(iterations.shape[1]/3):
        IterTitles += iter
    print IterTitles
    IterValues = np.concatenate((level,Wdim,iterations),axis=1)
    IterTable= pd.DataFrame(IterValues, columns = IterTitles)
    print IterTable.to_latex()
    print " \n  Outer Tol:  ",OuterTol, "Inner Tol:   ", InnerTol

    print KappaSave


    # # # if (ShowResultPlots == 'yes'):

#    plot(u_k)
#    plot(interpolate(u0,Velocity))
#
#    plot(p_k)
#
#    plot(interpolate(p0,Pressure))
#
#    plot(b_k)
#    plot(interpolate(b0,Magnetic))
#
#    plot(r_k)
#    plot(interpolate(r0,Lagrange))
#
#    interactive()

    interactive()
Beispiel #2
0
def foo():
    m = 4

    errL2u = np.zeros((m - 1, 1))
    errH1u = np.zeros((m - 1, 1))
    errL2p = np.zeros((m - 1, 1))
    errL2b = np.zeros((m - 1, 1))
    errCurlb = np.zeros((m - 1, 1))
    errL2r = np.zeros((m - 1, 1))
    errH1r = np.zeros((m - 1, 1))

    l2uorder = np.zeros((m - 1, 1))
    H1uorder = np.zeros((m - 1, 1))
    l2porder = np.zeros((m - 1, 1))
    l2border = np.zeros((m - 1, 1))
    Curlborder = np.zeros((m - 1, 1))
    l2rorder = np.zeros((m - 1, 1))
    H1rorder = np.zeros((m - 1, 1))

    NN = np.zeros((m - 1, 1))
    DoF = np.zeros((m - 1, 1))
    Velocitydim = np.zeros((m - 1, 1))
    Magneticdim = np.zeros((m - 1, 1))
    Pressuredim = np.zeros((m - 1, 1))
    Lagrangedim = np.zeros((m - 1, 1))
    Wdim = np.zeros((m - 1, 1))
    iterations = np.zeros((m - 1, 1))
    SolTime = np.zeros((m - 1, 1))
    udiv = np.zeros((m - 1, 1))
    MU = np.zeros((m - 1, 1))
    level = np.zeros((m - 1, 1))
    NSave = np.zeros((m - 1, 1))
    Mave = np.zeros((m - 1, 1))
    TotalTime = np.zeros((m - 1, 1))

    nn = 2

    dim = 2
    ShowResultPlots = 'yes'
    split = 'Linear'

    MU[0] = 1e0
    for xx in xrange(1, m):
        print xx
        level[xx - 1] = xx + 0
        nn = 2**(level[xx - 1])

        # Create mesh and define function space
        nn = int(nn)
        NN[xx - 1] = nn / 2
        # parameters["form_compiler"]["quadrature_degree"] = 6
        # parameters = CP.ParameterSetup()
        mesh = UnitSquareMesh(nn, nn)

        order = 2
        parameters['reorder_dofs_serial'] = False
        Velocity = VectorFunctionSpace(mesh, "CG", order)
        Pressure = FunctionSpace(mesh, "CG", order - 1)
        Magnetic = FunctionSpace(mesh, "N1curl", order - 1)
        Lagrange = FunctionSpace(mesh, "CG", order - 1)
        W = MixedFunctionSpace([Velocity, Pressure, Magnetic, Lagrange])
        # W = Velocity*Pressure*Magnetic*Lagrange
        Velocitydim[xx - 1] = Velocity.dim()
        Pressuredim[xx - 1] = Pressure.dim()
        Magneticdim[xx - 1] = Magnetic.dim()
        Lagrangedim[xx - 1] = Lagrange.dim()
        Wdim[xx - 1] = W.dim()
        print "\n\nW:  ", Wdim[xx - 1], "Velocity:  ", Velocitydim[
            xx -
            1], "Pressure:  ", Pressuredim[xx - 1], "Magnetic:  ", Magneticdim[
                xx - 1], "Lagrange:  ", Lagrangedim[xx - 1], "\n\n"
        dim = [Velocity.dim(), Pressure.dim(), Magnetic.dim(), Lagrange.dim()]

        def boundary(x, on_boundary):
            return on_boundary

        u0, p0, b0, r0, Laplacian, Advection, gradPres, CurlCurl, gradR, NS_Couple, M_Couple = ExactSol.MHD2D(
            4, 1, mesh)

        bcu = DirichletBC(Velocity, u0, boundary)
        bcb = DirichletBC(Magnetic, b0, boundary)
        bcr = DirichletBC(Lagrange, r0, boundary)

        # bc = [u0,p0,b0,r0]
        bcs = [bcu, bcb, bcr]
        FSpaces = [Velocity, Pressure, Magnetic, Lagrange]

        (u, b, p, r) = TrialFunctions(W)
        (v, c, q, s) = TestFunctions(W)
        kappa = 10.0
        Mu_m = 10.0
        MU = 1.0 / 1
        IterType = 'Full'
        Split = "No"
        Saddle = "No"
        Stokes = "No"
        SetupType = 'python-class'
        F_NS = -MU * Laplacian + Advection + gradPres - kappa * NS_Couple
        if kappa == 0:
            F_M = Mu_m * CurlCurl + gradR - kappa * M_Couple
        else:
            F_M = Mu_m * kappa * CurlCurl + gradR - kappa * M_Couple
        params = [kappa, Mu_m, MU]

        MO.PrintStr("Seting up initial guess matricies", 2, "=", "\n\n", "\n")
        BCtime = time.time()
        BC = MHDsetup.BoundaryIndices(mesh)
        MO.StrTimePrint("BC index function, time: ", time.time() - BCtime)
        Hiptmairtol = 1e-6
        HiptmairMatrices = PrecondSetup.MagneticSetup(Magnetic, Lagrange, b0,
                                                      r0, Hiptmairtol, params)

        MO.PrintStr("Setting up MHD initial guess", 5, "+", "\n\n", "\n\n")
        u_k, p_k, b_k, r_k = common.InitialGuess(FSpaces, [u0, p0, b0, r0],
                                                 [F_NS, F_M],
                                                 params,
                                                 HiptmairMatrices,
                                                 1e-10,
                                                 Neumann=Expression(
                                                     ("0", "0")),
                                                 options="New")
        b_t = TrialFunction(Velocity)
        c_t = TestFunction(Velocity)

        ones = Function(Pressure)
        ones.vector()[:] = (0 * ones.vector().array() + 1)
        # pConst = - assemble(p_k*dx)/assemble(ones*dx)
        p_k.vector()[:] += -assemble(p_k * dx) / assemble(ones * dx)
        x = Iter.u_prev(u_k, p_k, b_k, r_k)

        KSPlinearfluids, MatrixLinearFluids = PrecondSetup.FluidLinearSetup(
            Pressure, MU)
        kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k)
        #plot(b_k)

        ns, maxwell, CoupleTerm, Lmaxwell, Lns = forms.MHD2D(
            mesh, W, F_M, F_NS, u_k, b_k, params, IterType, "CG", Saddle,
            Stokes)
        RHSform = forms.PicardRHS(mesh, W, u_k, p_k, b_k, r_k, params, "CG",
                                  Saddle, Stokes)

        bcu = DirichletBC(W.sub(0), Expression(("0.0", "0.0")), boundary)
        bcb = DirichletBC(W.sub(2), Expression(("0.0", "0.0")), boundary)
        bcr = DirichletBC(W.sub(3), Expression(("0.0")), boundary)
        bcs = [bcu, bcb, bcr]

        parameters['linear_algebra_backend'] = 'uBLAS'

        eps = 1.0  # error measure ||u-u_k||
        tol = 1.0E-4  # tolerance
        iter = 0  # iteration counter
        maxiter = 10  # max no of iterations allowed
        SolutionTime = 0
        outer = 0
        # parameters['linear_algebra_backend'] = 'uBLAS'

        # FSpaces = [Velocity,Magnetic,Pressure,Lagrange]

        if IterType == "CD":
            MO.PrintStr("Setting up PETSc " + SetupType, 2, "=", "\n", "\n")
            Alin = MHDsetup.Assemble(W, ns, maxwell, CoupleTerm, Lns, Lmaxwell,
                                     RHSform, bcs + BC, "Linear", IterType)
            Fnlin, b = MHDsetup.Assemble(W, ns, maxwell, CoupleTerm, Lns,
                                         Lmaxwell, RHSform, bcs + BC,
                                         "NonLinear", IterType)
            A = Fnlin + Alin
            A, b = MHDsetup.SystemAssemble(FSpaces, A, b, SetupType, IterType)
            u = b.duplicate()

        u_is = PETSc.IS().createGeneral(range(Velocity.dim()))
        NS_is = PETSc.IS().createGeneral(range(Velocity.dim() +
                                               Pressure.dim()))
        M_is = PETSc.IS().createGeneral(
            range(Velocity.dim() + Pressure.dim(), W.dim()))
        OuterTol = 1e-5
        InnerTol = 1e-5
        NSits = 0
        Mits = 0
        TotalStart = time.time()
        SolutionTime = 0
        while eps > tol and iter < maxiter:
            iter += 1
            MO.PrintStr("Iter " + str(iter), 7, "=", "\n\n", "\n\n")
            AssembleTime = time.time()
            if IterType == "CD":
                MO.StrTimePrint("MHD CD RHS assemble, time: ",
                                time.time() - AssembleTime)
                b = MHDsetup.Assemble(W, ns, maxwell, CoupleTerm, Lns,
                                      Lmaxwell, RHSform, bcs + BC, "CD",
                                      IterType)
            else:
                MO.PrintStr("Setting up PETSc " + SetupType, 2, "=", "\n",
                            "\n")
                if Split == "Yes":
                    if iter == 1:
                        Alin = MHDsetup.Assemble(W, ns, maxwell, CoupleTerm,
                                                 Lns, Lmaxwell, RHSform,
                                                 bcs + BC, "Linear", IterType)
                        Fnlin, b = MHDsetup.Assemble(W, ns, maxwell,
                                                     CoupleTerm, Lns, Lmaxwell,
                                                     RHSform, bcs + BC,
                                                     "NonLinear", IterType)
                        A = Fnlin + Alin
                        A, b = MHDsetup.SystemAssemble(FSpaces, A, b,
                                                       SetupType, IterType)
                        u = b.duplicate()
                    else:
                        Fnline, b = MHDsetup.Assemble(W, ns, maxwell,
                                                      CoupleTerm, Lns,
                                                      Lmaxwell, RHSform,
                                                      bcs + BC, "NonLinear",
                                                      IterType)
                        A = Fnlin + Alin
                        A, b = MHDsetup.SystemAssemble(FSpaces, A, b,
                                                       SetupType, IterType)
                else:
                    AA, bb = assemble_system(maxwell + ns + CoupleTerm,
                                             (Lmaxwell + Lns) - RHSform, bcs)
                    A, b = CP.Assemble(AA, bb)
            # if iter == 1:
            MO.StrTimePrint("MHD total assemble, time: ",
                            time.time() - AssembleTime)

            u = b.duplicate()
            kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k)
            print "Inititial guess norm: ", u.norm(
                PETSc.NormType.NORM_INFINITY)
            #A,Q
            if IterType == 'Full':

                n = FacetNormal(mesh)
                mat = as_matrix([[b_k[1] * b_k[1], -b_k[1] * b_k[0]],
                                 [-b_k[1] * b_k[0], b_k[0] * b_k[0]]])
                a = params[2] * inner(grad(b_t), grad(c_t)) * dx(
                    W.mesh()) + inner((grad(b_t) * u_k), c_t) * dx(W.mesh(
                    )) + (1. / 2) * div(u_k) * inner(c_t, b_t) * dx(
                        W.mesh()) - (1. / 2) * inner(u_k, n) * inner(
                            c_t, b_t) * ds(W.mesh()) + kappa / Mu_m * inner(
                                mat * b_t, c_t) * dx(W.mesh())
                ShiftedMass = assemble(a)
                bcu.apply(ShiftedMass)
                ShiftedMass = CP.Assemble(ShiftedMass)
                kspF = NSprecondSetup.LSCKSPnonlinear(ShiftedMass)
            else:
                F = A.getSubMatrix(u_is, u_is)
                kspF = NSprecondSetup.LSCKSPnonlinear(F)

            aVec, L_M, L_NS, Bt, CoupleT = forms.MHDmatvec(mesh,
                                                           W,
                                                           Laplacian,
                                                           Laplacian,
                                                           u_k,
                                                           b_k,
                                                           u,
                                                           b,
                                                           p,
                                                           r,
                                                           params,
                                                           "Full",
                                                           "CG",
                                                           SaddlePoint="No")
            bcu = DirichletBC(Velocity, u0, boundary)
            PrecondTmult = {'Bt': Bt, 'Ct': CoupleT, 'BC': bcu}
            FS = {
                'velocity': Velocity,
                'pressure': Pressure,
                'magnetic': Magnetic,
                'multiplier': Lagrange
            }
            P = PETSc.Mat().createPython([W.dim(), W.dim()])
            P.setType('python')
            aa = MHDmulti.PetscMatVec(FS, aVec, bcs, PrecondTmult)
            P.setPythonContext(aa)
            P.setUp()
            stime = time.time()
            u, mits, nsits = S.solve(A, P, b, u, params, W, 'Directsss',
                                     IterType, OuterTol, InnerTol,
                                     HiptmairMatrices, Hiptmairtol,
                                     KSPlinearfluids, Fp, kspF)
            Soltime = time.time() - stime
            MO.StrTimePrint("MHD solve, time: ", Soltime)
            Mits += mits
            NSits += nsits
            SolutionTime += Soltime

            u1, p1, b1, r1, eps = Iter.PicardToleranceDecouple(
                u, x, FSpaces, dim, "2", iter)
            p1.vector()[:] += -assemble(p1 * dx) / assemble(ones * dx)
            u_k.assign(u1)
            p_k.assign(p1)
            b_k.assign(b1)
            r_k.assign(r1)
            uOld = np.concatenate((u_k.vector().array(), p_k.vector().array(),
                                   b_k.vector().array(), r_k.vector().array()),
                                  axis=0)
            x = IO.arrayToVec(uOld)

        XX = np.concatenate((u_k.vector().array(), p_k.vector().array(),
                             b_k.vector().array(), r_k.vector().array()),
                            axis=0)
        SolTime[xx - 1] = SolutionTime / iter
        NSave[xx - 1] = (float(NSits) / iter)
        Mave[xx - 1] = (float(Mits) / iter)
        iterations[xx - 1] = iter
        TotalTime[xx - 1] = time.time() - TotalStart
    #     dim = [Velocity.dim(), Pressure.dim(), Magnetic.dim(),Lagrange.dim()]

    #     ExactSolution = [u0,p0,b0,r0]
    #     errL2u[xx-1], errH1u[xx-1], errL2p[xx-1], errL2b[xx-1], errCurlb[xx-1], errL2r[xx-1], errH1r[xx-1] = Iter.Errors(XX,mesh,FSpaces,ExactSolution,order,dim, "DG")

    #     if xx > 1:
    #        l2uorder[xx-1] =  np.abs(np.log2(errL2u[xx-2]/errL2u[xx-1]))
    #        H1uorder[xx-1] =  np.abs(np.log2(errH1u[xx-2]/errH1u[xx-1]))

    #        l2porder[xx-1] =  np.abs(np.log2(errL2p[xx-2]/errL2p[xx-1]))

    #        l2border[xx-1] =  np.abs(np.log2(errL2b[xx-2]/errL2b[xx-1]))
    #        Curlborder[xx-1] =  np.abs(np.log2(errCurlb[xx-2]/errCurlb[xx-1]))

    #        l2rorder[xx-1] =  np.abs(np.log2(errL2r[xx-2]/errL2r[xx-1]))
    #        H1rorder[xx-1] =  np.abs(np.log2(errH1r[xx-2]/errH1r[xx-1]))

    # import pandas as pd

    # LatexTitles = ["l","DoFu","Dofp","V-L2","L2-order","V-H1","H1-order","P-L2","PL2-order"]
    # LatexValues = np.concatenate((level,Velocitydim,Pressuredim,errL2u,l2uorder,errH1u,H1uorder,errL2p,l2porder), axis=1)
    # LatexTable = pd.DataFrame(LatexValues, columns = LatexTitles)
    # pd.set_option('precision',3)
    # LatexTable = MO.PandasFormat(LatexTable,"V-L2","%2.4e")
    # LatexTable = MO.PandasFormat(LatexTable,'V-H1',"%2.4e")
    # LatexTable = MO.PandasFormat(LatexTable,"H1-order","%1.2f")
    # LatexTable = MO.PandasFormat(LatexTable,'L2-order',"%1.2f")
    # LatexTable = MO.PandasFormat(LatexTable,"P-L2","%2.4e")
    # LatexTable = MO.PandasFormat(LatexTable,'PL2-order',"%1.2f")
    # print LatexTable

    # print "\n\n   Magnetic convergence"
    # MagneticTitles = ["l","B DoF","R DoF","B-L2","L2-order","B-Curl","HCurl-order"]
    # MagneticValues = np.concatenate((level,Magneticdim,Lagrangedim,errL2b,l2border,errCurlb,Curlborder),axis=1)
    # MagneticTable= pd.DataFrame(MagneticValues, columns = MagneticTitles)
    # pd.set_option('precision',3)
    # MagneticTable = MO.PandasFormat(MagneticTable,"B-Curl","%2.4e")
    # MagneticTable = MO.PandasFormat(MagneticTable,'B-L2',"%2.4e")
    # MagneticTable = MO.PandasFormat(MagneticTable,"L2-order","%1.2f")
    # MagneticTable = MO.PandasFormat(MagneticTable,'HCurl-order',"%1.2f")
    # print MagneticTable

    # print "\n\n   Lagrange convergence"
    # LagrangeTitles = ["l","B DoF","R DoF","R-L2","L2-order","R-H1","H1-order"]
    # LagrangeValues = np.concatenate((level,Lagrangedim,Lagrangedim,errL2r,l2rorder,errH1r,H1rorder),axis=1)
    # LagrangeTable= pd.DataFrame(LagrangeValues, columns = LagrangeTitles)
    # pd.set_option('precision',3)
    # LagrangeTable = MO.PandasFormat(LagrangeTable,"R-L2","%2.4e")
    # LagrangeTable = MO.PandasFormat(LagrangeTable,'R-H1',"%2.4e")
    # LagrangeTable = MO.PandasFormat(LagrangeTable,"L2-order","%1.2f")
    # LagrangeTable = MO.PandasFormat(LagrangeTable,'H1-order',"%1.2f")
    # print LagrangeTable

    import pandas as pd

    print "\n\n   Iteration table"
    if IterType == "Full":
        IterTitles = [
            "l",
            "DoF",
            "AV solve Time",
            "Total picard time",
            "picard iterations",
            "Av Outer its",
            "Av Inner its",
        ]
    else:
        IterTitles = [
            "l", "DoF", "AV solve Time", "Total picard time",
            "picard iterations", "Av NS iters", "Av M iters"
        ]
    IterValues = np.concatenate(
        (level, Wdim, SolTime, TotalTime, iterations, Mave, NSave), axis=1)
    IterTable = pd.DataFrame(IterValues, columns=IterTitles)
    if IterType == "Full":
        IterTable = MO.PandasFormat(IterTable, 'Av Outer its', "%2.1f")
        IterTable = MO.PandasFormat(IterTable, 'Av Inner its', "%2.1f")
    else:
        IterTable = MO.PandasFormat(IterTable, 'Av NS iters', "%2.1f")
        IterTable = MO.PandasFormat(IterTable, 'Av M iters', "%2.1f")
    print IterTable
    print " \n  Outer Tol:  ", OuterTol, "Inner Tol:   ", InnerTol

    #    tableName = "2d_nu="+str(MU)+"_nu_m="+str(Mu_m)+"_kappa="+str(kappa)+"_l="+str(np.min(level))+"-"+str(np.max(level))+".tex"
    #    IterTable.to_latex(tableName)

    # # # if (ShowResultPlots == 'yes'):

    #    plot(u_k)
    #    plot(interpolate(u0,Velocity))
    #
    #    plot(p_k)
    #
    #    plot(interpolate(p0,Pressure))
    #
    #    plot(b_k)
    #    plot(interpolate(b0,Magnetic))
    #
    #    plot(r_k)
    #    plot(interpolate(r0,Lagrange))
    #
    #    interactive()

    interactive()
Beispiel #3
0
    m21 = inner(c, grad(r_k)) * dx
    m12 = inner(b_k, grad(s)) * dx

    a11 = params[2] * inner(grad(v), grad(u_k)) * dx + inner(
        (grad(u_k) * u_k), v) * dx + (1. / 2) * div(u_k) * inner(
            u_k, v) * dx - (1. / 2) * inner(u_k, n) * inner(u_k, v) * ds
    a12 = -div(v) * p_k * dx
    a21 = -div(u_k) * q * dx
    CoupleT = params[0] * (v[0] * b_k[1] - v[1] * b_k[0]) * curl(b_k) * dx
    Couple = -params[0] * (u_k[0] * b_k[1] - u_k[1] * b_k[0]) * curl(c) * dx

    L = Lns + Lmaxwell - (m11 + m12 + m21 + a11 + a21 + a12 + Couple + CoupleT)

    MO.PrintStr("Seting up initial guess matricies", 2, "=", "\n\n", "\n")
    BCtime = time.time()
    BC = MHDsetup.BoundaryIndices(mesh)
    MO.StrTimePrint("BC index function, time: ", time.time() - BCtime)
    Hiptmairtol = 1e-6
    HiptmairMatrices = PrecondSetup.MagneticSetup(Magnetic, Lagrange, b0, r0,
                                                  Hiptmairtol, params)

    MO.PrintStr("Setting up MHD initial guess", 5, "+", "\n\n", "\n\n")
    # u_k,p_k,b_k,r_k = common.InitialGuess(FSpaces,[u0,p0,b0,r0],[F_NS,F_M],params,HiptmairMatrices,1e-10,Neumann=None,options ="New")

    ones = Function(Pressure)
    ones.vector()[:] = (0 * ones.vector().array() + 1)
    # pConst = - assemble(p_k*dx)/assemble(ones*dx)
    # p_k.vector()[:] += - assemble(p_k*dx)/assemble(ones*dx)
    x = Iter.u_prev(u_k, p_k, b_k, r_k)

    KSPlinearfluids, MatrixLinearFluids = PrecondSetup.FluidLinearSetup(
Beispiel #4
0
def foo():
    m = 6
    mm = 4

    errL2u = np.zeros((m - 1, 1))
    errH1u = np.zeros((m - 1, 1))
    errL2p = np.zeros((m - 1, 1))
    errL2b = np.zeros((m - 1, 1))
    errCurlb = np.zeros((m - 1, 1))
    errL2r = np.zeros((m - 1, 1))
    errH1r = np.zeros((m - 1, 1))

    l2uorder = np.zeros((m - 1, 1))
    H1uorder = np.zeros((m - 1, 1))
    l2porder = np.zeros((m - 1, 1))
    l2border = np.zeros((m - 1, 1))
    Curlborder = np.zeros((m - 1, 1))
    l2rorder = np.zeros((m - 1, 1))
    H1rorder = np.zeros((m - 1, 1))

    NN = np.zeros((m - 1, 1))
    DoF = np.zeros((m - 1, 1))
    Velocitydim = np.zeros((m - 1, 1))
    Magneticdim = np.zeros((m - 1, 1))
    Pressuredim = np.zeros((m - 1, 1))
    Lagrangedim = np.zeros((m - 1, 1))
    Wdim = np.zeros((m - 1, 1))
    iterations = np.zeros((m - 1, 1))
    SolTime = np.zeros((m - 1, 1))
    udiv = np.zeros((m - 1, 1))
    MU = np.zeros((m - 1, 1))
    level = np.zeros((m - 1, 1))
    NSave = np.zeros((m - 1, 1))
    Mave = np.zeros((m - 1, 1))
    TotalTime = np.zeros((m - 1, 1))

    kappaSave = np.zeros((1, 3 * (mm)))
    KappaIts = np.zeros((m - 1, 3 * (mm)))
    nn = 2

    dim = 2
    ShowResultPlots = 'yes'
    split = 'Linear'

    MU[0] = 1e0
    ITERTYPE = ['Full', 'MD', 'CD']
    kappa = 0.01
    for xx in xrange(1, m):
        kk = 0
        kappa = 0.01
        for yy in xrange(1, mm + 1):
            kappa = kappa * 10
            for jj in range(3):
                IterType = ITERTYPE[jj]
                print xx
                level[xx - 1] = xx + 2
                nn = 2**(level[xx - 1])

                # Create mesh and define function space
                nn = int(nn)
                NN[xx - 1] = nn / 2
                # parameters["form_compiler"]["quadrature_degree"] = 6
                # parameters = CP.ParameterSetup()
                mesh = UnitSquareMesh(nn, nn)

                order = 1
                parameters['reorder_dofs_serial'] = False
                Velocity = VectorFunctionSpace(mesh, "CG", order + 1)
                Pressure = FunctionSpace(mesh, "CG", order)
                Magnetic = FunctionSpace(mesh, "N1curl", order)
                Lagrange = FunctionSpace(mesh, "CG", order)
                W = MixedFunctionSpace(
                    [Velocity, Pressure, Magnetic, Lagrange])
                # W = Velocity*Pressure*Magnetic*Lagrange
                Velocitydim[xx - 1] = Velocity.dim()
                Pressuredim[xx - 1] = Pressure.dim()
                Magneticdim[xx - 1] = Magnetic.dim()
                Lagrangedim[xx - 1] = Lagrange.dim()
                Wdim[xx - 1] = W.dim()
                print "\n\nW:  ", Wdim[xx - 1], "Velocity:  ", Velocitydim[
                    xx - 1], "Pressure:  ", Pressuredim[
                        xx - 1], "Magnetic:  ", Magneticdim[
                            xx - 1], "Lagrange:  ", Lagrangedim[xx - 1], "\n\n"
                dim = [
                    Velocity.dim(),
                    Pressure.dim(),
                    Magnetic.dim(),
                    Lagrange.dim()
                ]

                def boundary(x, on_boundary):
                    return on_boundary

                u0, p0, b0, r0, Laplacian, Advection, gradPres, CurlCurl, gradR, NS_Couple, M_Couple = ExactSol.MHD2D(
                    4, 1)

                bcu = DirichletBC(Velocity, u0, boundary)
                bcb = DirichletBC(Magnetic, b0, boundary)
                bcr = DirichletBC(Lagrange, r0, boundary)

                # bc = [u0,p0,b0,r0]
                bcs = [bcu, bcb, bcr]
                FSpaces = [Velocity, Pressure, Magnetic, Lagrange]

                (u, b, p, r) = TrialFunctions(W)
                (v, c, q, s) = TestFunctions(W)
                Mu_m = 10.0
                MU = 1.0

                # IterType = 'Full'
                Split = "No"
                Saddle = "No"
                Stokes = "No"
                SetupType = 'Matrix'
                F_NS = -MU * Laplacian + Advection + gradPres - kappa * NS_Couple
                if kappa == 0:
                    F_M = Mu_m * CurlCurl + gradR - kappa * M_Couple
                else:
                    F_M = Mu_m * kappa * CurlCurl + gradR - kappa * M_Couple
                params = [kappa, Mu_m, MU]

                MO.PrintStr("Seting up initial guess matricies", 2, "=",
                            "\n\n", "\n")
                BCtime = time.time()
                BC = MHDsetup.BoundaryIndices(FSpaces)
                MO.StrTimePrint("BC index function, time: ",
                                time.time() - BCtime)
                Hiptmairtol = 1e-5
                HiptmairMatrices = PrecondSetup.MagneticSetup(
                    Magnetic, Lagrange, b0, r0, Hiptmairtol, params)

                print HiptmairMatrices

                MO.PrintStr("Setting up MHD initial guess", 5, "+", "\n\n",
                            "\n\n")
                u_k, p_k, b_k, r_k = common.InitialGuess(FSpaces,
                                                         [u0, p0, b0, r0],
                                                         [F_NS, F_M],
                                                         params,
                                                         HiptmairMatrices,
                                                         1e-10,
                                                         Neumann=Expression(
                                                             ("0", "0")),
                                                         options="New")
                b_t = TrialFunction(Velocity)
                c_t = TestFunction(Velocity)

                ones = Function(Pressure)
                ones.vector()[:] = (0 * ones.vector().array() + 1)
                # pConst = - assemble(p_k*dx)/assemble(ones*dx)
                p_k.vector()[:] += -assemble(p_k * dx) / assemble(ones * dx)
                x = Iter.u_prev(u_k, p_k, b_k, r_k)

                KSPlinearfluids, MatrixLinearFluids = PrecondSetup.FluidLinearSetup(
                    Pressure, MU)
                kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k)
                #plot(b_k)

                ns, maxwell, CoupleTerm, Lmaxwell, Lns = forms.MHD2D(
                    mesh, W, F_M, F_NS, u_k, b_k, params, IterType, "CG",
                    Saddle, Stokes)
                RHSform = forms.PicardRHS(mesh, W, u_k, p_k, b_k, r_k, params,
                                          "CG", Saddle, Stokes)

                bcu = DirichletBC(FSpaces[0], Expression(("0.0", "0.0")),
                                  boundary)
                bcb = DirichletBC(FSpaces[2], Expression(("0.0", "0.0")),
                                  boundary)
                bcr = DirichletBC(FSpaces[3], Expression(("0.0")), boundary)
                bcs = [bcu, bcb, bcr]

                parameters['linear_algebra_backend'] = 'uBLAS'

                eps = 1.0  # error measure ||u-u_k||
                tol = 1.0E-4  # tolerance
                iter = 0  # iteration counter
                maxiter = 20  # max no of iterations allowed
                SolutionTime = 0
                outer = 0
                # parameters['linear_algebra_backend'] = 'uBLAS'

                # FSpaces = [Velocity,Magnetic,Pressure,Lagrange]

                # if IterType == "CD":
                #     MO.PrintStr("Setting up PETSc "+SetupType,2,"=","\n","\n")
                #     Alin = MHDsetup.Assemble(W,ns,maxwell,CoupleTerm,Lns,Lmaxwell,RHSform,bcs+BC, "Linear",IterType)
                #     Fnlin,b = MHDsetup.Assemble(W,ns,maxwell,CoupleTerm,Lns,Lmaxwell,RHSform,bcs+BC, "NonLinear",IterType)
                #     A = Fnlin+Alin
                #     A,b = MHDsetup.SystemAssemble(FSpaces,A,b,SetupType,IterType)
                #     u = b.duplicate()

                u_is = PETSc.IS().createGeneral(range(Velocity.dim()))
                NS_is = PETSc.IS().createGeneral(
                    range(Velocity.dim() + Pressure.dim()))
                M_is = PETSc.IS().createGeneral(
                    range(Velocity.dim() + Pressure.dim(), W.dim()))
                OuterTol = 1e-5
                InnerTol = 1e-5
                NSits = 0
                Mits = 0
                TotalStart = time.time()
                SolutionTime = 0
                while eps > tol and iter < maxiter:
                    iter += 1
                    MO.PrintStr("Iter " + str(iter), 7, "=", "\n\n", "\n\n")
                    AssembleTime = time.time()
                    # if IterType == "CD":
                    #     MO.StrTimePrint("MHD CD RHS assemble, time: ", time.time()-AssembleTime)
                    #     b = MHDsetup.Assemble(W,ns,maxwell,CoupleTerm,Lns,Lmaxwell,RHSform,bcs+BC, "CD",IterType)
                    # else:
                    MO.PrintStr("Setting up PETSc " + SetupType, 2, "=", "\n",
                                "\n")
                    if Split == "Yes":
                        if iter == 1:
                            Fnlin, b, bc = MHDsetup.Assemble(
                                W, ns, maxwell, CoupleTerm, Lns, Lmaxwell,
                                RHSform, bcs + BC, "NonLinear", IterType)
                            BC[0] = bc
                            Alin = MHDsetup.Assemble(W, ns, maxwell,
                                                     CoupleTerm, Lns, Lmaxwell,
                                                     RHSform, bcs + BC,
                                                     "Linear", IterType)
                            A = Fnlin + Alin
                            A, b = MHDsetup.SystemAssemble(
                                FSpaces, A, b, SetupType, IterType)
                            u = b.duplicate()
                        else:
                            Fnline, b, bc = MHDsetup.Assemble(
                                W, ns, maxwell, CoupleTerm, Lns, Lmaxwell,
                                RHSform, bcs + BC, "NonLinear", IterType)
                            A = Fnlin + Alin
                            A, b = MHDsetup.SystemAssemble(
                                FSpaces, A, b, SetupType, IterType)
                    else:
                        AA, bb = assemble_system(maxwell + ns + CoupleTerm,
                                                 (Lmaxwell + Lns) - RHSform,
                                                 bcs)
                        A, b = CP.Assemble(AA, bb)
                    # if iter == 1:
                    MO.StrTimePrint("MHD total assemble, time: ",
                                    time.time() - AssembleTime)

                    u = b.duplicate()
                    kspFp, Fp = PrecondSetup.FluidNonLinearSetup(
                        Pressure, MU, u_k)
                    print "Inititial guess norm: ", u.norm(
                        PETSc.NormType.NORM_INFINITY)
                    #A,Q
                    # if IterType == 'Full':

                    #     n = FacetNormal(mesh)
                    #     mat =  as_matrix([[b_k[1]*b_k[1],-b_k[1]*b_k[0]],[-b_k[1]*b_k[0],b_k[0]*b_k[0]]])
                    #     a = params[2]*inner(grad(b_t), grad(c_t))*dx(W.mesh()) + inner((grad(b_t)*u_k),c_t)*dx(W.mesh()) +(1./2)*div(u_k)*inner(c_t,b_t)*dx(W.mesh()) - (1./2)*inner(u_k,n)*inner(c_t,b_t)*ds(W.mesh())+kappa/Mu_m*inner(mat*b_t,c_t)*dx(W.mesh())
                    #     ShiftedMass = assemble(a)
                    #     bcu.apply(ShiftedMass)
                    #     ShiftedMass = CP.Assemble(ShiftedMass)
                    #     kspF = NSprecondSetup.LSCKSPnonlinear(ShiftedMass)
                    # else:
                    #     F = A.getSubMatrix(u_is,u_is)
                    #     kspF = NSprecondSetup.LSCKSPnonlinear(F)
                    stime = time.time()
                    u, mits, nsits = S.solve(A, b, u, params, W, 'Direct',
                                             IterType, OuterTol, InnerTol,
                                             HiptmairMatrices, Hiptmairtol,
                                             KSPlinearfluids, Fp, 0)
                    Soltime = time.time() - stime
                    MO.StrTimePrint("MHD solve, time: ", Soltime)
                    Mits += mits
                    NSits += nsits
                    SolutionTime += Soltime

                    u1, p1, b1, r1, eps = Iter.PicardToleranceDecouple(
                        u, x, FSpaces, dim, "2", iter)
                    if eps > 1e8 and iter > 2:
                        iter = 0
                        break
                    p1.vector()[:] += -assemble(p1 * dx) / assemble(ones * dx)
                    u_k.assign(u1)
                    p_k.assign(p1)
                    b_k.assign(b1)
                    r_k.assign(r1)
                    uOld = np.concatenate(
                        (u_k.vector().array(), p_k.vector().array(),
                         b_k.vector().array(), r_k.vector().array()),
                        axis=0)
                    x = IO.arrayToVec(uOld)
                print yy, jj
                print kk
                KappaIts[xx - 1, kk] = iter
                kappaSave[0, kk] = kappa
                kk += 1
                # XX= np.concatenate((u_k.vector().array(),p_k.vector().array(),b_k.vector().array(),r_k.vector().array()), axis=0)
                # SolTime[xx-1] = SolutionTime/iter
                # NSave[xx-1] = (float(NSits)/iter)
                # Mave[xx-1] = (float(Mits)/iter)
                # iterations[xx-1] = iter
                # TotalTime[xx-1] = time.time() - TotalStart

    print kappaSave
    print KappaIts

    #        dim = [Velocity.dim(), Pressure.dim(), Magnetic.dim(),Lagrange.dim()]
    #
    #        ExactSolution = [u0,p0,b0,r0]
    #        errL2u[xx-1], errH1u[xx-1], errL2p[xx-1], errL2b[xx-1], errCurlb[xx-1], errL2r[xx-1], errH1r[xx-1] = Iter.Errors(XX,mesh,FSpaces,ExactSolution,order,dim, "DG")
    #
    #        if xx > 1:
    #            l2uorder[xx-1] =  np.abs(np.log2(errL2u[xx-2]/errL2u[xx-1]))
    #            H1uorder[xx-1] =  np.abs(np.log2(errH1u[xx-2]/errH1u[xx-1]))
    #
    #            l2porder[xx-1] =  np.abs(np.log2(errL2p[xx-2]/errL2p[xx-1]))
    #
    #            l2border[xx-1] =  np.abs(np.log2(errL2b[xx-2]/errL2b[xx-1]))
    #            Curlborder[xx-1] =  np.abs(np.log2(errCurlb[xx-2]/errCurlb[xx-1]))
    #
    #            l2rorder[xx-1] =  np.abs(np.log2(errL2r[xx-2]/errL2r[xx-1]))
    #            H1rorder[xx-1] =  np.abs(np.log2(errH1r[xx-2]/errH1r[xx-1]))
    #
    #
    #
    #
    #    import pandas as pd
    #
    #
    #
    #    LatexTitles = ["l","DoFu","Dofp","V-L2","L2-order","V-H1","H1-order","P-L2","PL2-order"]
    #    LatexValues = np.concatenate((level,Velocitydim,Pressuredim,errL2u,l2uorder,errH1u,H1uorder,errL2p,l2porder), axis=1)
    #    LatexTable = pd.DataFrame(LatexValues, columns = LatexTitles)
    #    pd.set_option('precision',3)
    #    LatexTable = MO.PandasFormat(LatexTable,"V-L2","%2.4e")
    #    LatexTable = MO.PandasFormat(LatexTable,'V-H1',"%2.4e")
    #    LatexTable = MO.PandasFormat(LatexTable,"H1-order","%1.2f")
    #    LatexTable = MO.PandasFormat(LatexTable,'L2-order',"%1.2f")
    #    LatexTable = MO.PandasFormat(LatexTable,"P-L2","%2.4e")
    #    LatexTable = MO.PandasFormat(LatexTable,'PL2-order',"%1.2f")
    #    print LatexTable
    #
    #
    #    print "\n\n   Magnetic convergence"
    #    MagneticTitles = ["l","B DoF","R DoF","B-L2","L2-order","B-Curl","HCurl-order"]
    #    MagneticValues = np.concatenate((level,Magneticdim,Lagrangedim,errL2b,l2border,errCurlb,Curlborder),axis=1)
    #    MagneticTable= pd.DataFrame(MagneticValues, columns = MagneticTitles)
    #    pd.set_option('precision',3)
    #    MagneticTable = MO.PandasFormat(MagneticTable,"B-Curl","%2.4e")
    #    MagneticTable = MO.PandasFormat(MagneticTable,'B-L2',"%2.4e")
    #    MagneticTable = MO.PandasFormat(MagneticTable,"L2-order","%1.2f")
    #    MagneticTable = MO.PandasFormat(MagneticTable,'HCurl-order',"%1.2f")
    #    print MagneticTable

    import pandas as pd

    print "\n\n   Iteration table"

    LatexTitles = ["l", "DoF"]
    for x in xrange(1, mm + 1):
        LatexTitles.extend(["Full", "MD", "CD"])
    pd.set_option('precision', 3)
    LatexValues = np.concatenate((level, Wdim, KappaIts), axis=1)
    title = np.concatenate((np.array([[0, 0]]), kappaSave), axis=1)
    MU = ["0", "0"]
    for x in xrange(1, mm + 1):
        MU.extend(["Full", "MD", "CD"])
    LatexValues = np.vstack((title, LatexValues))
    LatexTable = pd.DataFrame(LatexValues, columns=LatexTitles)
    # name = "Output/"+IterType+"mutest"
    # LatexTable.to_csv(name)
    print LatexTable.to_latex()
    tableName = "2d_nu=" + str(MU) + "_nu_m=" + str(Mu_m) + "_kappa=" + str(
        kappa) + ".tex"
    IterTable.to_latex(tableName)

    # # # if (ShowResultPlots == 'yes'):

    #    plot(u_k)
    #    plot(interpolate(u0,Velocity))
    #
    #    plot(p_k)
    #
    #    plot(interpolate(p0,Pressure))
    #
    #    plot(b_k)
    #    plot(interpolate(b0,Magnetic))
    #
    #    plot(r_k)
    #    plot(interpolate(r0,Lagrange))
    #
    #    interactive()

    interactive()
Beispiel #5
0
    Split = "No"
    Saddle = "No"
    Stokes = "No"
    SetupType = 'python-class'
    F_NS = -MU * Laplacian + Advection + gradPres - kappa * NS_Couple
    if kappa == 0:
        F_M = Mu_m * CurlCurl + gradR - kappa * M_Couple
    else:
        F_M = Mu_m * kappa * CurlCurl + gradR - kappa * M_Couple
    # F_NS = Expression(('0.0','0.0'))
    # F_M = Expression(('0.0','0.0'))
    params = [kappa, Mu_m, MU]

    MO.PrintStr("Seting up initial guess matricies", 2, "=", "\n\n", "\n")
    BCtime = time.time()
    BC = MHDsetup.BoundaryIndices(mesh)
    MO.StrTimePrint("BC index function, time: ", time.time() - BCtime)
    Hiptmairtol = 1e-5
    HiptmairMatrices = PrecondSetup.MagneticSetup(Magnetic, Lagrange, b0, r0,
                                                  Hiptmairtol, params)

    MO.PrintStr("Setting up MHD initial guess", 5, "+", "\n\n", "\n\n")
    u_k, p_k, b_k, r_k = common.InitialGuess(FSpaces, [u0, p0, b0, r0],
                                             [F_NS, F_M],
                                             params,
                                             HiptmairMatrices,
                                             1e-10,
                                             Neumann=Expression(("0", "0")),
                                             options="New")
    b_t = TrialFunction(Velocity)
    c_t = TestFunction(Velocity)
Beispiel #6
0
def foo():
    m = 2

    errL2u = np.zeros((m - 1, 1))
    errH1u = np.zeros((m - 1, 1))
    errL2p = np.zeros((m - 1, 1))
    errL2b = np.zeros((m - 1, 1))
    errCurlb = np.zeros((m - 1, 1))
    errL2r = np.zeros((m - 1, 1))
    errH1r = np.zeros((m - 1, 1))

    l2uorder = np.zeros((m - 1, 1))
    H1uorder = np.zeros((m - 1, 1))
    l2porder = np.zeros((m - 1, 1))
    l2border = np.zeros((m - 1, 1))
    Curlborder = np.zeros((m - 1, 1))
    l2rorder = np.zeros((m - 1, 1))
    H1rorder = np.zeros((m - 1, 1))

    NN = np.zeros((m - 1, 1))
    DoF = np.zeros((m - 1, 1))
    Velocitydim = np.zeros((m - 1, 1))
    Magneticdim = np.zeros((m - 1, 1))
    Pressuredim = np.zeros((m - 1, 1))
    Lagrangedim = np.zeros((m - 1, 1))
    Wdim = np.zeros((m - 1, 1))
    iterations = np.zeros((m - 1, 1))
    SolTime = np.zeros((m - 1, 1))
    udiv = np.zeros((m - 1, 1))
    MU = np.zeros((m - 1, 1))
    level = np.zeros((m - 1, 1))
    NSave = np.zeros((m - 1, 1))
    Mave = np.zeros((m - 1, 1))
    TotalTime = np.zeros((m - 1, 1))

    nn = 2

    dim = 2
    ShowResultPlots = 'yes'
    split = 'Linear'

    MU[0] = 1e0
    for xx in xrange(1, m):
        print xx
        level[xx - 1] = xx + 2
        nn = 2**(level[xx - 1])

        # Create mesh and define function space
        nn = int(nn)
        NN[xx - 1] = nn / 2
        # parameters["form_compiler"]["quadrature_degree"] = 6
        # parameters = CP.ParameterSetup()
        mesh = UnitSquareMesh(nn, nn)
        # mesh = RectangleMesh(0,0,2*np.pi,2*np.pi,nn,nn)
        order = 1
        parameters['reorder_dofs_serial'] = False
        Velocity = VectorFunctionSpace(mesh, "CG", order)
        Pressure = FunctionSpace(mesh, "CG", order)
        Magnetic = FunctionSpace(mesh, "N1curl", order)
        Lagrange = FunctionSpace(mesh, "CG", order)
        W = MixedFunctionSpace([Velocity, Pressure, Magnetic, Lagrange])
        # W = Velocity*Pressure*Magnetic*Lagrange
        Velocitydim[xx - 1] = Velocity.dim()
        Pressuredim[xx - 1] = Pressure.dim()
        Magneticdim[xx - 1] = Magnetic.dim()
        Lagrangedim[xx - 1] = Lagrange.dim()
        Wdim[xx - 1] = W.dim()
        print "\n\nW:  ", Wdim[xx - 1], "Velocity:  ", Velocitydim[
            xx -
            1], "Pressure:  ", Pressuredim[xx - 1], "Magnetic:  ", Magneticdim[
                xx - 1], "Lagrange:  ", Lagrangedim[xx - 1], "\n\n"
        dim = [Velocity.dim(), Pressure.dim(), Magnetic.dim(), Lagrange.dim()]

        def boundary(x, on_boundary):
            return on_boundary

        u0, p0, b0, r0, Laplacian, Advection, gradPres, CurlCurl, gradR, NS_Couple, M_Couple = ExactSol.MHD2D(
            4, 1)

        bcu = DirichletBC(Velocity, u0, boundary)
        bcb = DirichletBC(Magnetic, Expression(('0', '0')), boundary)
        bcr = DirichletBC(Lagrange, Expression(('0')), boundary)

        # bc = [u0,p0,b0,r0]
        bcs = [bcu, bcb, bcr]
        FSpaces = [Velocity, Pressure, Magnetic, Lagrange]

        (u, b, p, r) = TrialFunctions(W)
        (v, c, q, s) = TestFunctions(W)
        kappa = 10.0
        Mu_m = 10.0
        MU = 1.0 / 1
        IterType = 'Full'
        Split = "No"
        Saddle = "No"
        Stokes = "No"
        SetupType = 'python-class'
        F_NS = -MU * Laplacian + Advection + gradPres - kappa * NS_Couple
        if kappa == 0:
            F_M = Mu_m * CurlCurl + gradR - kappa * M_Couple
        else:
            F_M = Mu_m * kappa * CurlCurl + gradR - kappa * M_Couple
        params = [kappa, Mu_m, MU]

        MO.PrintStr("Seting up initial guess matricies", 2, "=", "\n\n", "\n")
        BCtime = time.time()
        BC = MHDsetup.BoundaryIndices(mesh)
        MO.StrTimePrint("BC index function, time: ", time.time() - BCtime)
        Hiptmairtol = 1e-5
        HiptmairMatrices = PrecondSetup.MagneticSetup(Magnetic, Lagrange, b0,
                                                      r0, Hiptmairtol, params)
        print HiptmairMatrices
        C = CP.PETSc2Scipy(HiptmairMatrices[0])
        Px = CP.PETSc2Scipy(HiptmairMatrices[1][0])
        Py = CP.PETSc2Scipy(HiptmairMatrices[1][1])

        # VecV = VectorFunctionSpace(mesh,"CG",1)

        # f = Expression(('sin(x[0])','sin(x[1])'))
        # F = interpolate(f,VecV)
        # Fvec = F
        # bcrVec = DirichletBC(VecV,Expression(('0','0')), boundary)

        # bcrVec.apply(F.vector())

        # Fmag = interpolate(F,Magnetic)
        # bcb.apply(Fmag.vector())
        # print Fmag.vector().array()
        # print bmat([[Px,Py]]).shape
        # print bmat([[Px,Py]])*F.vector().array()
        # FmagP = bmat([[Px,Py]])*F.vector().array()
        # print np.max(abs(bmat([[Px,Py]])*F.vector().array()-Fmag.vector().array()))

        # print "\n\n\n\n"
        # Fmag = interpolate(f,Magnetic)
        # # plot(Fmag)
        # bcb.apply(Fmag.vector())
        # Forig = interpolate(Fmag,VecV)
        # # plot(Forig)
        # bcrVec.apply(Forig.vector())
        # print Forig.vector().array()
        # print "\n\n"
        # # print Fmag.vector().array()
        # print (bmat([[Px,Py]]).T*Fmag.vector().array())
        # print "\n\n\n\n"
        # print np.max(abs(bmat([[Px,Py]]).T*Fmag.vector().array()-Forig.vector().array()))

        u = TrialFunction(Magnetic)
        v = TestFunction(Magnetic)
        f = Expression('(x[0])')
        F = interpolate(f, Lagrange)
        # f = np.zeros(Lagrange.dim())
        f = np.zeros((Lagrange.dim(), 1))[:, 0]
        f[0] = 1.0
        F = Function(Lagrange)
        F.vector()[:] = f
        # bcrVec = DirichletBC(VecV,Expression(('0','0')), boundary)

        bcr.apply(F.vector())

        M = (inner(u, v) * dx)
        B = (inner(v, grad(F)) * dx)

        u = Function(Magnetic)
        solve(M == B, u, bcb)
        projection = project(grad(F), Magnetic, solver_type="lu")
        print projection
        u = bcb.apply(projection.vector())
        print projection.vector().array()
        print C * F.vector().array()
        print "\n\n\n"
        print abs(C * F.vector().array() - projection.vector().array()) < 1e-6
        print np.max(abs(projection.vector().array() -
                         C * F.vector().array()))  #,

        f = Expression(('(x[0])', '(x[1])'))
        F = interpolate(f, Magnetic)
        bcb.apply(F.vector())
        print F.vector().array()
        projection = project(div((F)), Lagrange, solver_type="lu")
        bcr.apply(projection.vector())
        print projection.vector().array()
        print C.T * F.vector().array()
        print "\n\n\n"
        print abs(C.T * F.vector().array() - projection.vector().array())
        print np.max(
            abs(projection.vector().array() - C.T * F.vector().array()))  #,

    interactive()