Beispiel #1
0
def get_valueBySector(df1, df2):
    df2 = df2.reset_index()
    array1 = np.array(df1)
    i = 0
    for row in array1:
        for elem in row:
            if (elem == False):
                df2 = nfv.dropRow(df2, i)
        i += 1
    df2 = df2.set_index('index')
    return df2
Beispiel #2
0
def generalData(Bibliography):
    df1 = nfv.dfFix(Bibliography, "Mujeres menores de 5 años (%)",
                    "Total population")
    df2 = nfv.dfFix(Bibliography, "Growth rate of populatoin (%)", "Culture")
    GD_Demography = nt.concatDF(df1, df2)
    nt.mkCSV(GD_Demography, "GD_Demography.csv")

    GD_Ethnicgroup = nfv.dfFix(Bibliography, "Ethnich group 1", "Religion").T
    nt.mkCSV(GD_Ethnicgroup, "GD_Ethnicgroup.csv")

    df1 = nfv.dfFix(Bibliography, "Parliamentary republic",
                    "Territorial and Urbanistic")
    GD_Government = df1
    GD_Government = GD_Government.isin(["Si"])
    GD_Government = GD_Government.any(
    )  #Lista con indice de columna y True si un contiene un True o False en caso contrario
    GD_Government = list(
        GD_Government[GD_Government == True].index)  #lista de indices con true
    GD_Government = pd.DataFrame(GD_Government)
    nt.mkCSV(GD_Government, "GD_Government.csv")

    GD_Economy = nfv.dfFix(Bibliography, "Agriculture (%)", "Government")
    nt.mkCSV(GD_Economy, "GD_Economy.csv")

    df1 = nfv.dfFix(Bibliography, "Urban population (%)", "Population density")
    df2 = nfv.dfFix(Bibliography, "Urban (inhabitants/hectares)",
                    "Infrastructures")
    GD_Urbanism = nt.concatDF(df1, df2)
    nt.mkCSV(GD_Urbanism, "GD_Urbanism.csv")

    df1 = nfv.dfFix(Bibliography, "Rural agua (%)",
                    "Access to improved sanitation")
    df2 = nfv.dfFix(Bibliography, "Rural saneamiento(%)",
                    "Access to electricity")
    df3 = nfv.dfFix(Bibliography, "Rural electricidad (%)",
                    "Matrix of electricity generation")
    GD_Infrastructure = nt.concatDF(nt.concatDF(df1, df2), df3)
    nt.mkCSV(GD_Infrastructure, "GD_Infrastructure.csv")

    GD_ElectricGenerationMix = nfv.dfFix(Bibliography, "Hydropower (%)",
                                         "High voltage (kV)")
    nt.mkCSV(GD_ElectricGenerationMix, "GD_ElectricGenerationMix.csv")

    GD_ServiceAccess = nfv.dfFix(Bibliography, "Illiteracy rate (%)",
                                 "Shelter")
    nt.mkCSV(GD_ServiceAccess, "GD_ServiceAccess.csv")

    GD_Shelter = nfv.dfFix(Bibliography, "Slum population rate (%)",
                           "SPECIFIC INFORMATION - SETTLEMENTS LEVEL")
    nt.mkCSV(GD_Shelter, "GD_Shelter.csv")

    Comun = pd.read_excel(nfv.getPath(nt.mainpath, "Bibliography_120220.xlsx"))
    Comun = nfv.fixBibliography(Comun)

    GD_Religion = nfv.dfFix(Comun, "Religion 1", "Language")
    df1 = nfv.dropRow(GD_Religion, 1)
    np_array1 = np.array(df1)
    df2 = nfv.dropRow(GD_Religion, 0)
    np_array2 = np.array(df2)
    np_array3 = np.concatenate((np_array1, np_array2), axis=1)
    GD_Religion = pd.DataFrame(np_array3)
    GD_Religion = GD_Religion.transpose()
    GD_Religion = GD_Religion[0].unique()
    GD_Religion = pd.DataFrame(GD_Religion)
    GD_Religion = GD_Religion.dropna()
    nt.mkCSV(GD_Religion, "GD_Religion.csv")

    GD_Language = nfv.dfFix(Comun, "Language 1", "Economy and well-being")
    df1 = nfv.dropRow(GD_Language, 1)
    np_array1 = np.array(df1)
    df2 = nfv.dropRow(GD_Language, 0)
    np_array2 = np.array(df2)
    np_array3 = np.concatenate((np_array1, np_array2), axis=1)
    GD_Language = pd.DataFrame(np_array3)
    GD_Language = GD_Language.transpose()
    GD_Language = GD_Language[0].unique()
    GD_Language = pd.DataFrame(GD_Language)
    GD_Language = GD_Language.dropna()
    nt.mkCSV(GD_Language, "GD_Language.csv")