def FluidNonLinearSetup(Pressure,mu, u_k): MO.PrintStr("Preconditioning Fluid linear setup",3,"=") # parameters['linear_algebra_backend'] = 'uBLAS' p = TrialFunction(Pressure) q = TestFunction(Pressure) mesh = Pressure.mesh() N = FacetNormal(Pressure.mesh()) h = CellSize(Pressure.mesh()) h_avg =avg(h) alpha = 10.0 gamma =10.0 tic() if Pressure.__str__().find("CG") == -1: Fp = assemble(mu*(jump(q)*jump(p)*dx(mesh)) \ + inner(inner(grad(p),u_k),q)*dx(mesh)- (1./2)*inner(u_k,N)*inner(q,p)*ds(mesh) \ -(1./2)*(inner(u_k('+'),N('+'))+inner(u_k('-'),N('-')))*avg(inner(q,p))*ds(mesh) \ -dot(avg(q),dot(outer(p('+'),N('+'))+outer(p('-'),N('-')),avg(u_k)))*dS(Pressure.mesh())) else: if mesh.topology().dim() == 2: Fp = assemble(mu*inner(grad(q), grad(p))*dx(mesh)+inner((u_k[0]*grad(p)[0]+u_k[1]*grad(p)[1]),q)*dx(mesh) + (1./2)*div(u_k)*inner(p,q)*dx(mesh) + (1./2)*(u_k[0]*N[0]+u_k[1]*N[1])*inner(p,q)*ds(mesh)) else: Fp = assemble(mu*inner(grad(q), grad(p))*dx(mesh)+inner((u_k[0]*grad(p)[0]+u_k[1]*grad(p)[1]+u_k[2]*grad(p)[2]),q)*dx(mesh) + (1./2)*div(u_k)*inner(p,q)*dx(mesh) - (1./2)*(u_k[0]*N[0]+u_k[1]*N[1]+u_k[2]*N[2])*inner(p,q)*ds(mesh))# + (-mu*inner(grad(q),N)*p + inner(u_k, N)*q*p)*ds(2)) Fp = CP.Assemble(Fp) print ("{:40}").format("DG convection-diffusion assemble, time: "), " ==> ",("{:4f}").format(toc()), ("{:9}").format(" time: "), ("{:4}").format(time.strftime('%X %x %Z')[0:5]) tic() kspFp= NSprecondSetup.PCDKSPnonlinear(Fp) print ("{:40}").format("Non-linear fluid precond, time: "), " ==> ",("{:4f}").format(toc()), ("{:9}").format(" time: "), ("{:4}").format(time.strftime('%X %x %Z')[0:5]) print "\n\n" return kspFp, Fp
def FluidLinearSetup(Pressure,mu): MO.PrintStr("Preconditioning Fluid linear setup",3,"=","\n\n") parameters['linear_algebra_backend'] = 'uBLAS' p = TrialFunction(Pressure) q = TestFunction(Pressure) N = FacetNormal(Pressure.mesh()) h = CellSize(Pressure.mesh()) h_avg =avg(h) alpha = 10.0 gamma =10.0 tic() if Pressure.__str__().find("CG") == -1: L = assemble(mu*(inner(grad(q), grad(p))*dx(Pressure.mesh()) \ - inner(avg(grad(q)), outer(p('+'),N('+'))+outer(p('-'),N('-')))*dS(Pressure.mesh()) \ - inner(outer(q('+'),N('+'))+outer(q('-'),N('-')), avg(grad(p)))*dS(Pressure.mesh()) \ + alpha/h_avg*inner(outer(q('+'),N('+'))+outer(q('-'),N('-')),outer(p('+'),N('+'))+outer(p('-'),N('-')))*dS(Pressure.mesh()) \ - inner(outer(q,N), grad(p))*ds(Pressure.mesh()) \ - inner(grad(q), outer(p,N))*ds(Pressure.mesh()) \ + gamma/h*inner(q,p)*ds(Pressure.mesh()))) else: L = assemble(mu*(inner(grad(q), grad(p))*dx(Pressure.mesh()))) L = PETSc.Mat().createAIJ(size=L.sparray().shape,csr=(L.sparray().indptr, L.sparray().indices, L.sparray().data)) print ("{:40}").format("DG scalar Laplacian assemble, time: "), " ==> ",("{:4f}").format(toc()), ("{:9}").format(" time: "), ("{:4}").format(time.strftime('%X %x %Z')[0:5]) tic() Q = assemble((1./mu)*inner(p,q)*dx) Q = PETSc.Mat().createAIJ(size=Q.sparray().shape,csr=(Q.sparray().indptr, Q.sparray().indices, Q.sparray().data)) print ("{:40}").format("DG scalar mass matrix assemble, time: "), " ==> ",("{:4f}").format(toc()), ("{:9}").format(" time: "), ("{:4}").format(time.strftime('%X %x %Z')[0:5]) tic() kspA, ksp = NSprecondSetup.PCDKSPlinear(Q, L) print ("{:40}").format("Linear fluid precond setup, time: "), " ==> ",("{:4f}").format(toc()), ("{:9}").format(" time: "), ("{:4}").format(time.strftime('%X %x %Z')[0:5]) return [kspA,ksp], [L,Q]
def FluidLinearSetup(Pressure, mu, mesh): MO.PrintStr("Preconditioning Fluid linear setup", 3, "=", "\n\n") # parameters['linear_algebra_backend'] = 'uBLAS' q = TrialFunction(Pressure) p = TestFunction(Pressure) tic() L = assemble(mu * inner(grad(q), grad(p)) * dx, form_compiler_parameters=ffc_options) L = CP.Assemble(L) print("{:40}").format("CG scalar Laplacian assemble, time: "), " ==> ", ( "{:4f}").format(toc()), ("{:9}").format(" time: "), ("{:4}").format( time.strftime('%X %x %Z')[0:5]) tic() Q = assemble((1. / mu) * inner(p, q) * dx, form_compiler_parameters=ffc_options) Q = CP.Assemble(Q) print( "{:40}").format("DG scalar mass matrix assemble, time: "), " ==> ", ( "{:4f}").format( toc()), ("{:9}").format(" time: "), ("{:4}").format( time.strftime('%X %x %Z')[0:5]) tic() kspL, kspQ = NSprecondSetup.PCDKSPlinear(L, Q) print("{:40}").format("Linear fluid precond setup, time: "), " ==> ", ( "{:4f}").format(toc()), ("{:9}").format(" time: "), ("{:4}").format( time.strftime('%X %x %Z')[0:5]) return [kspL, kspQ], [L, Q]
def FluidLinearSetup(Pressure,mu,mesh, boundaries, domains): MO.PrintStr("Preconditioning Fluid linear setup",3,"=","\n\n") # parameters['linear_algebra_backend'] = 'uBLAS' q = TrialFunction(Pressure) p = TestFunction(Pressure) dx = Measure('dx', domain=mesh, subdomain_data=domains) ds = Measure('ds', domain=mesh, subdomain_data=boundaries) N = FacetNormal(Pressure.mesh()) h = CellSize(Pressure.mesh()) h_avg =avg(h) alpha = 10.0 gamma =10.0 tic() if Pressure.__str__().find("CG") == -1: L = assemble(mu*(jump(q)*jump(p)*dx(Pressure.mesh()))) else: L = assemble(mu*(inner(grad(q), grad(p))*dx(Pressure.mesh())))# + inner(grad(q),N)*p*ds(2)) L = CP.Assemble(L) print ("{:40}").format("CG scalar Laplacian assemble, time: "), " ==> ",("{:4f}").format(toc()), ("{:9}").format(" time: "), ("{:4}").format(time.strftime('%X %x %Z')[0:5]) tic() Q = assemble((1./mu)*inner(p,q)*dx) Q = CP.Assemble(Q) print ("{:40}").format("DG scalar mass matrix assemble, time: "), " ==> ",("{:4f}").format(toc()), ("{:9}").format(" time: "), ("{:4}").format(time.strftime('%X %x %Z')[0:5]) tic() kspA, ksp = NSprecondSetup.PCDKSPlinear(Q, L) print ("{:40}").format("Linear fluid precond setup, time: "), " ==> ",("{:4f}").format(toc()), ("{:9}").format(" time: "), ("{:4}").format(time.strftime('%X %x %Z')[0:5]) return [kspA,ksp], [L,Q]
def FluidNonLinearSetup(Pressure, mu, u_k): MO.PrintStr("Preconditioning Fluid linear setup", 3, "=") parameters['linear_algebra_backend'] = 'uBLAS' p = TrialFunction(Pressure) q = TestFunction(Pressure) mesh = Pressure.mesh() N = FacetNormal(Pressure.mesh()) h = CellSize(Pressure.mesh()) h_avg = avg(h) alpha = 10.0 gamma = 10.0 tic() Fp = assemble(mu*(inner(grad(q), grad(p))*dx(mesh) \ - inner(avg(grad(q)), outer(p('+'),N('+'))+outer(p('-'),N('-')))*dS (Pressure.mesh())\ - inner(outer(q('+'),N('+'))+outer(q('-'),N('-')), avg(grad(p)))*dS (Pressure.mesh())\ + alpha/h_avg*inner(outer(q('+'),N('+'))+outer(q('-'),N('-')),outer(p('+'),N('+'))+outer(p('-'),N('-')))*dS(Pressure.mesh()) \ - inner(outer(q,N), grad(p))*ds(mesh) \ - inner(grad(q), outer(p,N))*ds(mesh) \ + gamma/h*inner(q,p)*ds(mesh)) \ + inner(inner(grad(p),u_k),q)*dx(mesh)- (1/2)*inner(u_k,N)*inner(q,p)*ds(mesh) \ -(1/2)*(inner(u_k('+'),N('+'))+inner(u_k('-'),N('-')))*avg(inner(q,p))*ds(mesh) \ -dot(avg(q),dot(outer(p('+'),N('+'))+outer(p('-'),N('-')),avg(u_k)))*dS(Pressure.mesh())) Fp = PETSc.Mat().createAIJ(size=Fp.sparray().shape, csr=(Fp.sparray().indptr, Fp.sparray().indices, Fp.sparray().data)) print("{:40}" ).format("DG convection-diffusion assemble, time: "), " ==> ", ( "{:4f}").format( toc()), ("{:9}").format(" time: "), ("{:4}").format( time.strftime('%X %x %Z')[0:5]) tic() kspFp = NSprecondSetup.PCDKSPnonlinear(Fp) print("{:40}").format("Non-linear fluid precond, time: "), " ==> ", ( "{:4f}").format(toc()), ("{:9}").format(" time: "), ("{:4}").format( time.strftime('%X %x %Z')[0:5]) print "\n\n" return kspFp, Fp
def foo(): m = 4 errL2u = np.zeros((m - 1, 1)) errH1u = np.zeros((m - 1, 1)) errL2p = np.zeros((m - 1, 1)) errL2b = np.zeros((m - 1, 1)) errCurlb = np.zeros((m - 1, 1)) errL2r = np.zeros((m - 1, 1)) errH1r = np.zeros((m - 1, 1)) l2uorder = np.zeros((m - 1, 1)) H1uorder = np.zeros((m - 1, 1)) l2porder = np.zeros((m - 1, 1)) l2border = np.zeros((m - 1, 1)) Curlborder = np.zeros((m - 1, 1)) l2rorder = np.zeros((m - 1, 1)) H1rorder = np.zeros((m - 1, 1)) NN = np.zeros((m - 1, 1)) DoF = np.zeros((m - 1, 1)) Velocitydim = np.zeros((m - 1, 1)) Magneticdim = np.zeros((m - 1, 1)) Pressuredim = np.zeros((m - 1, 1)) Lagrangedim = np.zeros((m - 1, 1)) Wdim = np.zeros((m - 1, 1)) iterations = np.zeros((m - 1, 1)) SolTime = np.zeros((m - 1, 1)) udiv = np.zeros((m - 1, 1)) MU = np.zeros((m - 1, 1)) level = np.zeros((m - 1, 1)) NSave = np.zeros((m - 1, 1)) Mave = np.zeros((m - 1, 1)) TotalTime = np.zeros((m - 1, 1)) nn = 2 dim = 2 ShowResultPlots = 'yes' split = 'Linear' MU[0] = 1e0 for xx in xrange(1, m): print xx level[xx - 1] = xx + 0 nn = 2**(level[xx - 1]) # Create mesh and define function space nn = int(nn) NN[xx - 1] = nn / 2 # parameters["form_compiler"]["quadrature_degree"] = 6 # parameters = CP.ParameterSetup() mesh = UnitSquareMesh(nn, nn) order = 2 parameters['reorder_dofs_serial'] = False Velocity = VectorFunctionSpace(mesh, "CG", order) Pressure = FunctionSpace(mesh, "CG", order - 1) Magnetic = FunctionSpace(mesh, "N1curl", order - 1) Lagrange = FunctionSpace(mesh, "CG", order - 1) W = MixedFunctionSpace([Velocity, Pressure, Magnetic, Lagrange]) # W = Velocity*Pressure*Magnetic*Lagrange Velocitydim[xx - 1] = Velocity.dim() Pressuredim[xx - 1] = Pressure.dim() Magneticdim[xx - 1] = Magnetic.dim() Lagrangedim[xx - 1] = Lagrange.dim() Wdim[xx - 1] = W.dim() print "\n\nW: ", Wdim[xx - 1], "Velocity: ", Velocitydim[ xx - 1], "Pressure: ", Pressuredim[xx - 1], "Magnetic: ", Magneticdim[ xx - 1], "Lagrange: ", Lagrangedim[xx - 1], "\n\n" dim = [Velocity.dim(), Pressure.dim(), Magnetic.dim(), Lagrange.dim()] def boundary(x, on_boundary): return on_boundary u0, p0, b0, r0, Laplacian, Advection, gradPres, CurlCurl, gradR, NS_Couple, M_Couple = ExactSol.MHD2D( 4, 1, mesh) bcu = DirichletBC(Velocity, u0, boundary) bcb = DirichletBC(Magnetic, b0, boundary) bcr = DirichletBC(Lagrange, r0, boundary) # bc = [u0,p0,b0,r0] bcs = [bcu, bcb, bcr] FSpaces = [Velocity, Pressure, Magnetic, Lagrange] (u, b, p, r) = TrialFunctions(W) (v, c, q, s) = TestFunctions(W) kappa = 10.0 Mu_m = 10.0 MU = 1.0 / 1 IterType = 'Full' Split = "No" Saddle = "No" Stokes = "No" SetupType = 'python-class' F_NS = -MU * Laplacian + Advection + gradPres - kappa * NS_Couple if kappa == 0: F_M = Mu_m * CurlCurl + gradR - kappa * M_Couple else: F_M = Mu_m * kappa * CurlCurl + gradR - kappa * M_Couple params = [kappa, Mu_m, MU] MO.PrintStr("Seting up initial guess matricies", 2, "=", "\n\n", "\n") BCtime = time.time() BC = MHDsetup.BoundaryIndices(mesh) MO.StrTimePrint("BC index function, time: ", time.time() - BCtime) Hiptmairtol = 1e-6 HiptmairMatrices = PrecondSetup.MagneticSetup(Magnetic, Lagrange, b0, r0, Hiptmairtol, params) MO.PrintStr("Setting up MHD initial guess", 5, "+", "\n\n", "\n\n") u_k, p_k, b_k, r_k = common.InitialGuess(FSpaces, [u0, p0, b0, r0], [F_NS, F_M], params, HiptmairMatrices, 1e-10, Neumann=Expression( ("0", "0")), options="New") b_t = TrialFunction(Velocity) c_t = TestFunction(Velocity) ones = Function(Pressure) ones.vector()[:] = (0 * ones.vector().array() + 1) # pConst = - assemble(p_k*dx)/assemble(ones*dx) p_k.vector()[:] += -assemble(p_k * dx) / assemble(ones * dx) x = Iter.u_prev(u_k, p_k, b_k, r_k) KSPlinearfluids, MatrixLinearFluids = PrecondSetup.FluidLinearSetup( Pressure, MU) kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k) #plot(b_k) ns, maxwell, CoupleTerm, Lmaxwell, Lns = forms.MHD2D( mesh, W, F_M, F_NS, u_k, b_k, params, IterType, "CG", Saddle, Stokes) RHSform = forms.PicardRHS(mesh, W, u_k, p_k, b_k, r_k, params, "CG", Saddle, Stokes) bcu = DirichletBC(W.sub(0), Expression(("0.0", "0.0")), boundary) bcb = DirichletBC(W.sub(2), Expression(("0.0", "0.0")), boundary) bcr = DirichletBC(W.sub(3), Expression(("0.0")), boundary) bcs = [bcu, bcb, bcr] parameters['linear_algebra_backend'] = 'uBLAS' eps = 1.0 # error measure ||u-u_k|| tol = 1.0E-4 # tolerance iter = 0 # iteration counter maxiter = 10 # max no of iterations allowed SolutionTime = 0 outer = 0 # parameters['linear_algebra_backend'] = 'uBLAS' # FSpaces = [Velocity,Magnetic,Pressure,Lagrange] if IterType == "CD": MO.PrintStr("Setting up PETSc " + SetupType, 2, "=", "\n", "\n") Alin = MHDsetup.Assemble(W, ns, maxwell, CoupleTerm, Lns, Lmaxwell, RHSform, bcs + BC, "Linear", IterType) Fnlin, b = MHDsetup.Assemble(W, ns, maxwell, CoupleTerm, Lns, Lmaxwell, RHSform, bcs + BC, "NonLinear", IterType) A = Fnlin + Alin A, b = MHDsetup.SystemAssemble(FSpaces, A, b, SetupType, IterType) u = b.duplicate() u_is = PETSc.IS().createGeneral(range(Velocity.dim())) NS_is = PETSc.IS().createGeneral(range(Velocity.dim() + Pressure.dim())) M_is = PETSc.IS().createGeneral( range(Velocity.dim() + Pressure.dim(), W.dim())) OuterTol = 1e-5 InnerTol = 1e-5 NSits = 0 Mits = 0 TotalStart = time.time() SolutionTime = 0 while eps > tol and iter < maxiter: iter += 1 MO.PrintStr("Iter " + str(iter), 7, "=", "\n\n", "\n\n") AssembleTime = time.time() if IterType == "CD": MO.StrTimePrint("MHD CD RHS assemble, time: ", time.time() - AssembleTime) b = MHDsetup.Assemble(W, ns, maxwell, CoupleTerm, Lns, Lmaxwell, RHSform, bcs + BC, "CD", IterType) else: MO.PrintStr("Setting up PETSc " + SetupType, 2, "=", "\n", "\n") if Split == "Yes": if iter == 1: Alin = MHDsetup.Assemble(W, ns, maxwell, CoupleTerm, Lns, Lmaxwell, RHSform, bcs + BC, "Linear", IterType) Fnlin, b = MHDsetup.Assemble(W, ns, maxwell, CoupleTerm, Lns, Lmaxwell, RHSform, bcs + BC, "NonLinear", IterType) A = Fnlin + Alin A, b = MHDsetup.SystemAssemble(FSpaces, A, b, SetupType, IterType) u = b.duplicate() else: Fnline, b = MHDsetup.Assemble(W, ns, maxwell, CoupleTerm, Lns, Lmaxwell, RHSform, bcs + BC, "NonLinear", IterType) A = Fnlin + Alin A, b = MHDsetup.SystemAssemble(FSpaces, A, b, SetupType, IterType) else: AA, bb = assemble_system(maxwell + ns + CoupleTerm, (Lmaxwell + Lns) - RHSform, bcs) A, b = CP.Assemble(AA, bb) # if iter == 1: MO.StrTimePrint("MHD total assemble, time: ", time.time() - AssembleTime) u = b.duplicate() kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k) print "Inititial guess norm: ", u.norm( PETSc.NormType.NORM_INFINITY) #A,Q if IterType == 'Full': n = FacetNormal(mesh) mat = as_matrix([[b_k[1] * b_k[1], -b_k[1] * b_k[0]], [-b_k[1] * b_k[0], b_k[0] * b_k[0]]]) a = params[2] * inner(grad(b_t), grad(c_t)) * dx( W.mesh()) + inner((grad(b_t) * u_k), c_t) * dx(W.mesh( )) + (1. / 2) * div(u_k) * inner(c_t, b_t) * dx( W.mesh()) - (1. / 2) * inner(u_k, n) * inner( c_t, b_t) * ds(W.mesh()) + kappa / Mu_m * inner( mat * b_t, c_t) * dx(W.mesh()) ShiftedMass = assemble(a) bcu.apply(ShiftedMass) ShiftedMass = CP.Assemble(ShiftedMass) kspF = NSprecondSetup.LSCKSPnonlinear(ShiftedMass) else: F = A.getSubMatrix(u_is, u_is) kspF = NSprecondSetup.LSCKSPnonlinear(F) aVec, L_M, L_NS, Bt, CoupleT = forms.MHDmatvec(mesh, W, Laplacian, Laplacian, u_k, b_k, u, b, p, r, params, "Full", "CG", SaddlePoint="No") bcu = DirichletBC(Velocity, u0, boundary) PrecondTmult = {'Bt': Bt, 'Ct': CoupleT, 'BC': bcu} FS = { 'velocity': Velocity, 'pressure': Pressure, 'magnetic': Magnetic, 'multiplier': Lagrange } P = PETSc.Mat().createPython([W.dim(), W.dim()]) P.setType('python') aa = MHDmulti.PetscMatVec(FS, aVec, bcs, PrecondTmult) P.setPythonContext(aa) P.setUp() stime = time.time() u, mits, nsits = S.solve(A, P, b, u, params, W, 'Directsss', IterType, OuterTol, InnerTol, HiptmairMatrices, Hiptmairtol, KSPlinearfluids, Fp, kspF) Soltime = time.time() - stime MO.StrTimePrint("MHD solve, time: ", Soltime) Mits += mits NSits += nsits SolutionTime += Soltime u1, p1, b1, r1, eps = Iter.PicardToleranceDecouple( u, x, FSpaces, dim, "2", iter) p1.vector()[:] += -assemble(p1 * dx) / assemble(ones * dx) u_k.assign(u1) p_k.assign(p1) b_k.assign(b1) r_k.assign(r1) uOld = np.concatenate((u_k.vector().array(), p_k.vector().array(), b_k.vector().array(), r_k.vector().array()), axis=0) x = IO.arrayToVec(uOld) XX = np.concatenate((u_k.vector().array(), p_k.vector().array(), b_k.vector().array(), r_k.vector().array()), axis=0) SolTime[xx - 1] = SolutionTime / iter NSave[xx - 1] = (float(NSits) / iter) Mave[xx - 1] = (float(Mits) / iter) iterations[xx - 1] = iter TotalTime[xx - 1] = time.time() - TotalStart # dim = [Velocity.dim(), Pressure.dim(), Magnetic.dim(),Lagrange.dim()] # ExactSolution = [u0,p0,b0,r0] # errL2u[xx-1], errH1u[xx-1], errL2p[xx-1], errL2b[xx-1], errCurlb[xx-1], errL2r[xx-1], errH1r[xx-1] = Iter.Errors(XX,mesh,FSpaces,ExactSolution,order,dim, "DG") # if xx > 1: # l2uorder[xx-1] = np.abs(np.log2(errL2u[xx-2]/errL2u[xx-1])) # H1uorder[xx-1] = np.abs(np.log2(errH1u[xx-2]/errH1u[xx-1])) # l2porder[xx-1] = np.abs(np.log2(errL2p[xx-2]/errL2p[xx-1])) # l2border[xx-1] = np.abs(np.log2(errL2b[xx-2]/errL2b[xx-1])) # Curlborder[xx-1] = np.abs(np.log2(errCurlb[xx-2]/errCurlb[xx-1])) # l2rorder[xx-1] = np.abs(np.log2(errL2r[xx-2]/errL2r[xx-1])) # H1rorder[xx-1] = np.abs(np.log2(errH1r[xx-2]/errH1r[xx-1])) # import pandas as pd # LatexTitles = ["l","DoFu","Dofp","V-L2","L2-order","V-H1","H1-order","P-L2","PL2-order"] # LatexValues = np.concatenate((level,Velocitydim,Pressuredim,errL2u,l2uorder,errH1u,H1uorder,errL2p,l2porder), axis=1) # LatexTable = pd.DataFrame(LatexValues, columns = LatexTitles) # pd.set_option('precision',3) # LatexTable = MO.PandasFormat(LatexTable,"V-L2","%2.4e") # LatexTable = MO.PandasFormat(LatexTable,'V-H1',"%2.4e") # LatexTable = MO.PandasFormat(LatexTable,"H1-order","%1.2f") # LatexTable = MO.PandasFormat(LatexTable,'L2-order',"%1.2f") # LatexTable = MO.PandasFormat(LatexTable,"P-L2","%2.4e") # LatexTable = MO.PandasFormat(LatexTable,'PL2-order',"%1.2f") # print LatexTable # print "\n\n Magnetic convergence" # MagneticTitles = ["l","B DoF","R DoF","B-L2","L2-order","B-Curl","HCurl-order"] # MagneticValues = np.concatenate((level,Magneticdim,Lagrangedim,errL2b,l2border,errCurlb,Curlborder),axis=1) # MagneticTable= pd.DataFrame(MagneticValues, columns = MagneticTitles) # pd.set_option('precision',3) # MagneticTable = MO.PandasFormat(MagneticTable,"B-Curl","%2.4e") # MagneticTable = MO.PandasFormat(MagneticTable,'B-L2',"%2.4e") # MagneticTable = MO.PandasFormat(MagneticTable,"L2-order","%1.2f") # MagneticTable = MO.PandasFormat(MagneticTable,'HCurl-order',"%1.2f") # print MagneticTable # print "\n\n Lagrange convergence" # LagrangeTitles = ["l","B DoF","R DoF","R-L2","L2-order","R-H1","H1-order"] # LagrangeValues = np.concatenate((level,Lagrangedim,Lagrangedim,errL2r,l2rorder,errH1r,H1rorder),axis=1) # LagrangeTable= pd.DataFrame(LagrangeValues, columns = LagrangeTitles) # pd.set_option('precision',3) # LagrangeTable = MO.PandasFormat(LagrangeTable,"R-L2","%2.4e") # LagrangeTable = MO.PandasFormat(LagrangeTable,'R-H1',"%2.4e") # LagrangeTable = MO.PandasFormat(LagrangeTable,"L2-order","%1.2f") # LagrangeTable = MO.PandasFormat(LagrangeTable,'H1-order',"%1.2f") # print LagrangeTable import pandas as pd print "\n\n Iteration table" if IterType == "Full": IterTitles = [ "l", "DoF", "AV solve Time", "Total picard time", "picard iterations", "Av Outer its", "Av Inner its", ] else: IterTitles = [ "l", "DoF", "AV solve Time", "Total picard time", "picard iterations", "Av NS iters", "Av M iters" ] IterValues = np.concatenate( (level, Wdim, SolTime, TotalTime, iterations, Mave, NSave), axis=1) IterTable = pd.DataFrame(IterValues, columns=IterTitles) if IterType == "Full": IterTable = MO.PandasFormat(IterTable, 'Av Outer its', "%2.1f") IterTable = MO.PandasFormat(IterTable, 'Av Inner its', "%2.1f") else: IterTable = MO.PandasFormat(IterTable, 'Av NS iters', "%2.1f") IterTable = MO.PandasFormat(IterTable, 'Av M iters', "%2.1f") print IterTable print " \n Outer Tol: ", OuterTol, "Inner Tol: ", InnerTol # tableName = "2d_nu="+str(MU)+"_nu_m="+str(Mu_m)+"_kappa="+str(kappa)+"_l="+str(np.min(level))+"-"+str(np.max(level))+".tex" # IterTable.to_latex(tableName) # # # if (ShowResultPlots == 'yes'): # plot(u_k) # plot(interpolate(u0,Velocity)) # # plot(p_k) # # plot(interpolate(p0,Pressure)) # # plot(b_k) # plot(interpolate(b0,Magnetic)) # # plot(r_k) # plot(interpolate(r0,Lagrange)) # # interactive() interactive()
# print "Inititial guess norm: ", u.norm(PETSc.NormType.NORM_INFINITY) # #A,Q n = FacetNormal(mesh) b_t = TrialFunction(Velocity) c_t = TestFunction(Velocity) mat = as_matrix([[b_k[1] * b_k[1], -b_k[1] * b_k[0]], [-b_k[1] * b_k[0], b_k[0] * b_k[0]]]) aa = params[2] * inner(grad(b_t), grad(c_t)) * dx(W.mesh()) + inner( (grad(b_t) * u_k), c_t ) * dx(W.mesh()) + (1. / 2) * div(u_k) * inner(c_t, b_t) * dx( W.mesh()) - (1. / 2) * inner(u_k, n) * inner(c_t, b_t) * ds( W.mesh()) + kappa / Mu_m * inner(mat * b_t, c_t) * dx(W.mesh()) ShiftedMass = assemble(aa) bcu.apply(ShiftedMass) ShiftedMass = CP.Assemble(ShiftedMass) kspF = NSprecondSetup.LSCKSPnonlinear(ShiftedMass) stime = time.time() u, mits, nsits = S.solve(A, b, u, params, W, 'Direct', IterType, OuterTol, InnerTol, HiptmairMatrices, Hiptmairtol, KSPlinearfluids, Fp, kspF) Soltime = time.time() - stime MO.StrTimePrint("MHD solve, time: ", Soltime) Mits += mits NSits += nsits SolutionTime += Soltime u1, p1, b1, r1, eps = Iter.PicardToleranceDecouple( u, x, FSpaces, dim, "2", iter) p1.vector()[:] += -assemble(p1 * dx) / assemble(ones * dx)
def foo(): m = 6 errL2u = np.zeros((m - 1, 1)) errH1u = np.zeros((m - 1, 1)) errL2p = np.zeros((m - 1, 1)) errL2b = np.zeros((m - 1, 1)) errCurlb = np.zeros((m - 1, 1)) errL2r = np.zeros((m - 1, 1)) errH1r = np.zeros((m - 1, 1)) l2uorder = np.zeros((m - 1, 1)) H1uorder = np.zeros((m - 1, 1)) l2porder = np.zeros((m - 1, 1)) l2border = np.zeros((m - 1, 1)) Curlborder = np.zeros((m - 1, 1)) l2rorder = np.zeros((m - 1, 1)) H1rorder = np.zeros((m - 1, 1)) NN = np.zeros((m - 1, 1)) DoF = np.zeros((m - 1, 1)) Velocitydim = np.zeros((m - 1, 1)) Magneticdim = np.zeros((m - 1, 1)) Pressuredim = np.zeros((m - 1, 1)) Lagrangedim = np.zeros((m - 1, 1)) Wdim = np.zeros((m - 1, 1)) iterations = np.zeros((m - 1, 1)) SolTime = np.zeros((m - 1, 1)) udiv = np.zeros((m - 1, 1)) MU = np.zeros((m - 1, 1)) level = np.zeros((m - 1, 1)) NSave = np.zeros((m - 1, 1)) Mave = np.zeros((m - 1, 1)) TotalTime = np.zeros((m - 1, 1)) nn = 2 dim = 2 ShowResultPlots = 'yes' split = 'Linear' kappa = 0.01 for yy in xrange(1, 5): kappa = kappa * 10 for xx in xrange(1, m): print xx level[xx - 1] = xx + 2 nn = 2**(level[xx - 1]) # Create mesh and define function space nn = int(nn) NN[xx - 1] = nn / 2 # parameters["form_compiler"]["quadrature_degree"] = 6 # parameters = CP.ParameterSetup() mesh = UnitSquareMesh(nn, nn) order = 1 parameters['reorder_dofs_serial'] = False Velocity = VectorFunctionSpace(mesh, "CG", order) Pressure = FunctionSpace(mesh, "DG", order - 1) Magnetic = FunctionSpace(mesh, "N1curl", order) Lagrange = FunctionSpace(mesh, "CG", order) W = MixedFunctionSpace([Velocity, Pressure, Magnetic, Lagrange]) # W = Velocity*Pressure*Magnetic*Lagrange Velocitydim[xx - 1] = Velocity.dim() Pressuredim[xx - 1] = Pressure.dim() Magneticdim[xx - 1] = Magnetic.dim() Lagrangedim[xx - 1] = Lagrange.dim() Wdim[xx - 1] = W.dim() print "\n\nW: ", Wdim[xx - 1], "Velocity: ", Velocitydim[ xx - 1], "Pressure: ", Pressuredim[ xx - 1], "Magnetic: ", Magneticdim[ xx - 1], "Lagrange: ", Lagrangedim[xx - 1], "\n\n" dim = [ Velocity.dim(), Pressure.dim(), Magnetic.dim(), Lagrange.dim() ] def boundary(x, on_boundary): return on_boundary u0, p0, b0, r0, Laplacian, Advection, gradPres, CurlCurl, gradR, NS_Couple, M_Couple = ExactSol.MHD2D( 4, 1) bcu = DirichletBC(W.sub(0), u0, boundary) bcb = DirichletBC(W.sub(2), b0, boundary) bcr = DirichletBC(W.sub(3), r0, boundary) # bc = [u0,p0,b0,r0] bcs = [bcu, bcb, bcr] FSpaces = [Velocity, Pressure, Magnetic, Lagrange] (u, b, p, r) = TrialFunctions(W) (v, c, q, s) = TestFunctions(W) #kappa = 1.0 MU = 1.0 Mu_m = 1e1 IterType = 'Combined' F_NS = -MU * Laplacian + Advection + gradPres - kappa * NS_Couple if kappa == 0: F_M = Mu_m * CurlCurl + gradR - kappa * M_Couple else: F_M = Mu_m * kappa * CurlCurl + gradR - kappa * M_Couple params = [kappa, Mu_m, MU] # MO.PrintStr("Preconditioning MHD setup",5,"+","\n\n","\n\n") Hiptmairtol = 1e-5 HiptmairMatrices = PrecondSetup.MagneticSetup( Magnetic, Lagrange, b0, r0, Hiptmairtol, params) MO.PrintStr("Setting up MHD initial guess", 5, "+", "\n\n", "\n\n") u_k, p_k, b_k, r_k = common.InitialGuess(FSpaces, [u0, p0, b0, r0], [F_NS, F_M], params, HiptmairMatrices, 1e-6, Neumann=Expression( ("0", "0")), options="New", FS="DG") #plot(p_k, interactive = True) b_t = TrialFunction(Velocity) c_t = TestFunction(Velocity) #print assemble(inner(b,c)*dx).array().shape #print mat #ShiftedMass = assemble(inner(mat*b,c)*dx) #as_vector([inner(b,c)[0]*b_k[0],inner(b,c)[1]*(-b_k[1])]) ones = Function(Pressure) ones.vector()[:] = (0 * ones.vector().array() + 1) # pConst = - assemble(p_k*dx)/assemble(ones*dx) p_k.vector()[:] += -assemble(p_k * dx) / assemble(ones * dx) x = Iter.u_prev(u_k, p_k, b_k, r_k) KSPlinearfluids, MatrixLinearFluids = PrecondSetup.FluidLinearSetup( Pressure, MU) kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k) #plot(b_k) ns, maxwell, CoupleTerm, Lmaxwell, Lns = forms.MHD2D( mesh, W, F_M, F_NS, u_k, b_k, params, IterType, "DG") RHSform = forms.PicardRHS(mesh, W, u_k, p_k, b_k, r_k, params, "DG") bcu = DirichletBC(W.sub(0), Expression(("0.0", "0.0")), boundary) bcb = DirichletBC(W.sub(2), Expression(("0.0", "0.0")), boundary) bcr = DirichletBC(W.sub(3), Expression(("0.0")), boundary) bcs = [bcu, bcb, bcr] eps = 1.0 # error measure ||u-u_k|| tol = 1.0E-4 # tolerance iter = 0 # iteration counter maxiter = 40 # max no of iterations allowed SolutionTime = 0 outer = 0 # parameters['linear_algebra_backend'] = 'uBLAS' # FSpaces = [Velocity,Magnetic,Pressure,Lagrange] if IterType == "CD": AA, bb = assemble_system(maxwell + ns, (Lmaxwell + Lns) - RHSform, bcs) A, b = CP.Assemble(AA, bb) # u = b.duplicate() # P = CP.Assemble(PP) u_is = PETSc.IS().createGeneral(range(Velocity.dim())) NS_is = PETSc.IS().createGeneral( range(Velocity.dim() + Pressure.dim())) M_is = PETSc.IS().createGeneral( range(Velocity.dim() + Pressure.dim(), W.dim())) OuterTol = 1e-5 InnerTol = 1e-5 NSits = 0 Mits = 0 TotalStart = time.time() SolutionTime = 0 while eps > tol and iter < maxiter: iter += 1 MO.PrintStr("Iter " + str(iter), 7, "=", "\n\n", "\n\n") tic() if IterType == "CD": bb = assemble((Lmaxwell + Lns) - RHSform) for bc in bcs: bc.apply(bb) FF = AA.sparray()[0:dim[0], 0:dim[0]] A, b = CP.Assemble(AA, bb) # if iter == 1 if iter == 1: u = b.duplicate() F = A.getSubMatrix(u_is, u_is) kspF = NSprecondSetup.LSCKSPnonlinear(F) else: AA, bb = assemble_system(maxwell + ns + CoupleTerm, (Lmaxwell + Lns) - RHSform, bcs) A, b = CP.Assemble(AA, bb) # if iter == 1: if iter == 1: u = b.duplicate() print("{:40}").format("MHD assemble, time: "), " ==> ", ( "{:4f}").format( toc()), ("{:9}").format(" time: "), ("{:4}").format( time.strftime('%X %x %Z')[0:5]) kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k) print "Inititial guess norm: ", u.norm() #A,Q if IterType == 'Combined': n = FacetNormal(mesh) mat = as_matrix([[b_k[1] * b_k[1], -b_k[1] * b_k[0]], [-b_k[1] * b_k[0], b_k[0] * b_k[0]]]) F = A.getSubMatrix(u_is, u_is) a = params[2] * inner(grad(b_t), grad(c_t)) * dx( W.mesh()) + inner((grad(b_t) * u_k), c_t) * dx( W.mesh()) + (1 / 2) * div(u_k) * inner( c_t, b_t) * dx(W.mesh()) - (1 / 2) * inner( u_k, n) * inner(c_t, b_t) * ds( W.mesh()) + kappa / Mu_m * inner( mat * b_t, c_t) * dx(W.mesh()) ShiftedMass = assemble(a) bcu.apply(ShiftedMass) kspF = NSprecondSetup.LSCKSPnonlinear(F) else: F = A.getSubMatrix(u_is, u_is) kspF = NSprecondSetup.LSCKSPnonlinear(F) stime = time.time() u, mits, nsits = S.solve(A, b, u, params, W, IterType, OuterTol, InnerTol, HiptmairMatrices, Hiptmairtol, KSPlinearfluids, Fp, kspF) Soltime = time.time() - stime Mits += mits NSits += nsits SolutionTime += Soltime u1, p1, b1, r1, eps = Iter.PicardToleranceDecouple( u, x, FSpaces, dim, "2", iter) p1.vector()[:] += -assemble(p1 * dx) / assemble(ones * dx) u_k.assign(u1) p_k.assign(p1) b_k.assign(b1) r_k.assign(r1) uOld = np.concatenate( (u_k.vector().array(), p_k.vector().array(), b_k.vector().array(), r_k.vector().array()), axis=0) x = IO.arrayToVec(uOld) XX = np.concatenate((u_k.vector().array(), p_k.vector().array(), b_k.vector().array(), r_k.vector().array()), axis=0) SolTime[xx - 1] = SolutionTime / iter NSave[xx - 1] = (float(NSits) / iter) Mave[xx - 1] = (float(Mits) / iter) iterations[xx - 1] = iter TotalTime[xx - 1] = time.time() - TotalStart dim = [ Velocity.dim(), Pressure.dim(), Magnetic.dim(), Lagrange.dim() ] # # ExactSolution = [u0,p0,b0,r0] # errL2u[xx-1], errH1u[xx-1], errL2p[xx-1], errL2b[xx-1], errCurlb[xx-1], errL2r[xx-1], errH1r[xx-1] = Iter.Errors(XX,mesh,FSpaces,ExactSolution,order,dim, "DG") # # if xx > 1: # l2uorder[xx-1] = np.abs(np.log2(errL2u[xx-2]/errL2u[xx-1])) # H1uorder[xx-1] = np.abs(np.log2(errH1u[xx-2]/errH1u[xx-1])) # # l2porder[xx-1] = np.abs(np.log2(errL2p[xx-2]/errL2p[xx-1])) # # l2border[xx-1] = np.abs(np.log2(errL2b[xx-2]/errL2b[xx-1])) # Curlborder[xx-1] = np.abs(np.log2(errCurlb[xx-2]/errCurlb[xx-1])) # # l2rorder[xx-1] = np.abs(np.log2(errL2r[xx-2]/errL2r[xx-1])) # H1rorder[xx-1] = np.abs(np.log2(errH1r[xx-2]/errH1r[xx-1])) import pandas as pd # LatexTitles = ["l","DoFu","Dofp","V-L2","L2-order","V-H1","H1-order","P-L2","PL2-order"] # LatexValues = np.concatenate((level,Velocitydim,Pressuredim,errL2u,l2uorder,errH1u,H1uorder,errL2p,l2porder), axis=1) # LatexTable = pd.DataFrame(LatexValues, columns = LatexTitles) # pd.set_option('precision',3) # LatexTable = MO.PandasFormat(LatexTable,"V-L2","%2.4e") # LatexTable = MO.PandasFormat(LatexTable,'V-H1',"%2.4e") # LatexTable = MO.PandasFormat(LatexTable,"H1-order","%1.2f") # LatexTable = MO.PandasFormat(LatexTable,'L2-order',"%1.2f") # LatexTable = MO.PandasFormat(LatexTable,"P-L2","%2.4e") # LatexTable = MO.PandasFormat(LatexTable,'PL2-order',"%1.2f") # print LatexTable # # # print "\n\n Magnetic convergence" # MagneticTitles = ["l","B DoF","R DoF","B-L2","L2-order","B-Curl","HCurl-order"] # MagneticValues = np.concatenate((level,Magneticdim,Lagrangedim,errL2b,l2border,errCurlb,Curlborder),axis=1) # MagneticTable= pd.DataFrame(MagneticValues, columns = MagneticTitles) # pd.set_option('precision',3) # MagneticTable = MO.PandasFormat(MagneticTable,"B-Curl","%2.4e") # MagneticTable = MO.PandasFormat(MagneticTable,'B-L2',"%2.4e") # MagneticTable = MO.PandasFormat(MagneticTable,"L2-order","%1.2f") # MagneticTable = MO.PandasFormat(MagneticTable,'HCurl-order',"%1.2f") # print MagneticTable # # # # # import pandas as pd # print "\n\n Iteration table" if IterType == "Full": IterTitles = [ "l", "DoF", "AV solve Time", "Total picard time", "picard iterations", "Av Outer its", "Av Inner its", ] else: IterTitles = [ "l", "DoF", "AV solve Time", "Total picard time", "picard iterations", "Av NS iters", "Av M iters" ] IterValues = np.concatenate( (level, Wdim, SolTime, TotalTime, iterations, Mave, NSave), axis=1) IterTable = pd.DataFrame(IterValues, columns=IterTitles) if IterType == "Full": IterTable = MO.PandasFormat(IterTable, 'Av Outer its', "%2.1f") IterTable = MO.PandasFormat(IterTable, 'Av Inner its', "%2.1f") else: IterTable = MO.PandasFormat(IterTable, 'Av NS iters', "%2.1f") IterTable = MO.PandasFormat(IterTable, 'Av M iters', "%2.1f") print IterTable print " \n Outer Tol: ", OuterTol, "Inner Tol: ", InnerTol IterTable.to_latex('Tables/IterType=' + IterType + '_n=' + str(m) + '_mu=' + str(MU) + '_kappa=' + str(kappa) + '_mu_m=' + str(Mu_m) + '.tex') # # # if (ShowResultPlots == 'yes'): # plot(u_k) # plot(interpolate(u0,Velocity)) # # plot(p_k) # # plot(interpolate(p0,Pressure)) # # plot(b_k) # plot(interpolate(b0,Magnetic)) # # plot(r_k) # plot(interpolate(r0,Lagrange)) # # interactive() interactive()
def foo(): m = 2 errL2u =np.zeros((m-1,1)) errH1u =np.zeros((m-1,1)) errL2p =np.zeros((m-1,1)) errL2b =np.zeros((m-1,1)) errCurlb =np.zeros((m-1,1)) errL2r =np.zeros((m-1,1)) errH1r =np.zeros((m-1,1)) l2uorder = np.zeros((m-1,1)) H1uorder =np.zeros((m-1,1)) l2porder = np.zeros((m-1,1)) l2border = np.zeros((m-1,1)) Curlborder =np.zeros((m-1,1)) l2rorder = np.zeros((m-1,1)) H1rorder = np.zeros((m-1,1)) NN = np.zeros((m-1,1)) DoF = np.zeros((m-1,1)) Velocitydim = np.zeros((m-1,1)) Magneticdim = np.zeros((m-1,1)) Pressuredim = np.zeros((m-1,1)) Lagrangedim = np.zeros((m-1,1)) Wdim = np.zeros((m-1,1)) iterations = np.zeros((m-1,1)) SolTime = np.zeros((m-1,1)) udiv = np.zeros((m-1,1)) MU = np.zeros((m-1,1)) level = np.zeros((m-1,1)) NSave = np.zeros((m-1,1)) Mave = np.zeros((m-1,1)) TotalTime = np.zeros((m-1,1)) nn = 2 dim = 2 ShowResultPlots = 'yes' split = 'Linear' MU[0]= 1e0 for xx in xrange(1,m): print xx level[xx-1] = xx+ 10 nn = 2**(level[xx-1]) # Create mesh and define function space nn = int(nn) NN[xx-1] = nn/2 # parameters["form_compiler"]["quadrature_degree"] = 6 # parameters = CP.ParameterSetup() mesh = UnitSquareMesh(nn,nn) order = 1 parameters['reorder_dofs_serial'] = False Velocity = VectorFunctionSpace(mesh, "CG", order) Pressure = FunctionSpace(mesh, "DG", order-1) Magnetic = FunctionSpace(mesh, "N1curl", order) Lagrange = FunctionSpace(mesh, "CG", order) W = MixedFunctionSpace([Velocity,Magnetic, Pressure, Lagrange]) # W = Velocity*Pressure*Magnetic*Lagrange Velocitydim[xx-1] = Velocity.dim() Pressuredim[xx-1] = Pressure.dim() Magneticdim[xx-1] = Magnetic.dim() Lagrangedim[xx-1] = Lagrange.dim() Wdim[xx-1] = W.dim() print "\n\nW: ",Wdim[xx-1],"Velocity: ",Velocitydim[xx-1],"Pressure: ",Pressuredim[xx-1],"Magnetic: ",Magneticdim[xx-1],"Lagrange: ",Lagrangedim[xx-1],"\n\n" dim = [Velocity.dim(), Magnetic.dim(), Pressure.dim(), Lagrange.dim()] def boundary(x, on_boundary): return on_boundary u0, p0,b0, r0, Laplacian, Advection, gradPres,CurlCurl, gradR, NS_Couple, M_Couple = ExactSol.MHD2D(4,1) bcu = DirichletBC(W.sub(0),u0, boundary) bcb = DirichletBC(W.sub(1),b0, boundary) bcr = DirichletBC(W.sub(3),r0, boundary) # bc = [u0,p0,b0,r0] bcs = [bcu,bcb,bcr] FSpaces = [Velocity,Pressure,Magnetic,Lagrange] (u, b, p, r) = TrialFunctions(W) (v, c, q, s) = TestFunctions(W) kappa = 1.0 Mu_m =1e1 MU = 1.0/1 IterType = 'Full' F_NS = -MU*Laplacian+Advection+gradPres-kappa*NS_Couple if kappa == 0: F_M = Mu_m*CurlCurl+gradR -kappa*M_Couple else: F_M = Mu_m*kappa*CurlCurl+gradR -kappa*M_Couple params = [kappa,Mu_m,MU] # MO.PrintStr("Preconditioning MHD setup",5,"+","\n\n","\n\n") HiptmairMatrices = PrecondSetup.MagneticSetup(Magnetic, Lagrange, b0, r0, 1e-5, params) MO.PrintStr("Setting up MHD initial guess",5,"+","\n\n","\n\n") u_k,p_k,b_k,r_k = common.InitialGuess(FSpaces,[u0,p0,b0,r0],[F_NS,F_M],params,HiptmairMatrices,1e-6,Neumann=Expression(("0","0")),options ="New", FS = "DG") #plot(p_k, interactive = True) b_t = TrialFunction(Velocity) c_t = TestFunction(Velocity) #print assemble(inner(b,c)*dx).array().shape #print mat #ShiftedMass = assemble(inner(mat*b,c)*dx) #as_vector([inner(b,c)[0]*b_k[0],inner(b,c)[1]*(-b_k[1])]) ones = Function(Pressure) ones.vector()[:]=(0*ones.vector().array()+1) # pConst = - assemble(p_k*dx)/assemble(ones*dx) p_k.vector()[:] += - assemble(p_k*dx)/assemble(ones*dx) x = Iter.u_prev(u_k,b_k,p_k,r_k) KSPlinearfluids, MatrixLinearFluids = PrecondSetup.FluidLinearSetup(Pressure, MU) kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k) #plot(b_k) ns,maxwell,CoupleTerm,Lmaxwell,Lns = forms.MHD2D(mesh, W,F_M,F_NS, u_k,b_k,params,IterType,"DG", SaddlePoint = "Yes") RHSform = forms.PicardRHS(mesh, W, u_k, p_k, b_k, r_k, params,"DG",SaddlePoint = "Yes") bcu = DirichletBC(W.sub(0),Expression(("0.0","0.0")), boundary) bcb = DirichletBC(W.sub(1),Expression(("0.0","0.0")), boundary) bcr = DirichletBC(W.sub(3),Expression(("0.0")), boundary) bcs = [bcu,bcb,bcr] eps = 1.0 # error measure ||u-u_k|| tol = 1.0E-4 # tolerance iter = 0 # iteration counter maxiter = 40 # max no of iterations allowed SolutionTime = 0 outer = 0 # parameters['linear_algebra_backend'] = 'uBLAS' # FSpaces = [Velocity,Magnetic,Pressure,Lagrange] if IterType == "CD": AA, bb = assemble_system(maxwell+ns, (Lmaxwell + Lns) - RHSform, bcs) A,b = CP.Assemble(AA,bb) # u = b.duplicate() # P = CP.Assemble(PP) u_is = PETSc.IS().createGeneral(range(Velocity.dim())) NS_is = PETSc.IS().createGeneral(range(Velocity.dim()+Pressure.dim())) M_is = PETSc.IS().createGeneral(range(Velocity.dim()+Pressure.dim(),W.dim())) OuterTol = 1e-5 InnerTol = 1e-3 NSits =0 Mits =0 TotalStart =time.time() SolutionTime = 0 while eps > tol and iter < maxiter: iter += 1 MO.PrintStr("Iter "+str(iter),7,"=","\n\n","\n\n") tic() if IterType == "CD": bb = assemble((Lmaxwell + Lns) - RHSform) for bc in bcs: bc.apply(bb) FF = AA.sparray()[0:dim[0],0:dim[0]] A,b = CP.Assemble(AA,bb) # if iter == 1 if iter == 1: u = b.duplicate() F = A.getSubMatrix(u_is,u_is) kspF = NSprecondSetup.LSCKSPnonlinear(F) else: AA, bb = assemble_system(maxwell+ns+CoupleTerm, (Lmaxwell + Lns) - RHSform, bcs) A,b = CP.Assemble(AA,bb) del AA, bb n = FacetNormal(mesh) mat = as_matrix([[b_k[1]*b_k[1],-b_k[1]*b_k[0]],[-b_k[1]*b_k[0],b_k[0]*b_k[0]]]) F = A.getSubMatrix(u_is,u_is) a = params[2]*inner(grad(b_t), grad(c_t))*dx(W.mesh()) + inner((grad(b_t)*u_k),c_t)*dx(W.mesh()) +(1/2)*div(u_k)*inner(c_t,b_t)*dx(W.mesh()) - (1/2)*inner(u_k,n)*inner(c_t,b_t)*ds(W.mesh())+kappa/Mu_m*inner(mat*b_t,c_t)*dx(W.mesh()) ShiftedMass = assemble(a) bcu.apply(ShiftedMass) #MO.StoreMatrix(AA.sparray()[0:dim[0],0:dim[0]]+ShiftedMass.sparray(),"A") kspF = NSprecondSetup.LSCKSPnonlinear(F) # if iter == 1: if iter == 1: u = b.duplicate() print ("{:40}").format("MHD assemble, time: "), " ==> ",("{:4f}").format(toc()), ("{:9}").format(" time: "), ("{:4}").format(time.strftime('%X %x %Z')[0:5]) kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k) print "Inititial guess norm: ", u.norm() solver = 'Schur' if solver == 'Schur': FF = CP.Assemble(ShiftedMass) kspF = NSprecondSetup.LSCKSPnonlinear(FF) ksp = PETSc.KSP() ksp.create(comm=PETSc.COMM_WORLD) pc = ksp.getPC() ksp.setType('fgmres') pc.setType('python') pc.setType(PETSc.PC.Type.PYTHON) # FSpace = [Velocity,Magnetic,Pressure,Lagrange] reshist = {} def monitor(ksp, its, fgnorm): reshist[its] = fgnorm print its," OUTER:", fgnorm # ksp.setMonitor(monitor) ksp.max_it = 1000 FFSS = [Velocity,Magnetic,Pressure,Lagrange] pc.setPythonContext(MHDpreconditioner.InnerOuterMAGNETICapprox(FFSS,kspF, KSPlinearfluids[0], KSPlinearfluids[1],Fp, HiptmairMatrices[3], HiptmairMatrices[4], HiptmairMatrices[2], HiptmairMatrices[0], HiptmairMatrices[1], HiptmairMatrices[6],1e-5,FF)) #OptDB = PETSc.Options() # OptDB['pc_factor_mat_solver_package'] = "mumps" # OptDB['pc_factor_mat_ordering_type'] = "rcm" # ksp.setFromOptions() scale = b.norm() b = b/scale ksp.setOperators(A,A) del A stime = time.time() ksp.solve(b,u) Soltime = time.time()- stime NSits += ksp.its Mits += ksp.its # Mits +=dodim u = u*scale SolutionTime = SolutionTime +Soltime MO.PrintStr("Number iterations ="+str(ksp.its),60,"+","\n\n","\n\n") MO.PrintStr("Time: "+str(Soltime),60,"+","\n\n","\n\n") else: kspOuter = PETSc.KSP() kspOuter.create(comm=PETSc.COMM_WORLD) FFSS = [Velocity,Magnetic,Pressure,Lagrange] kspOuter.setType('fgmres') kspOuter.setOperators(A,A) pcOuter = kspOuter.getPC() pcOuter.setType(PETSc.PC.Type.KSP) kspInner = pcOuter.getKSP() kspInner.setType('gmres') pcInner = kspInner.getPC() # FSpace = [Velocity,Magnetic,Pressure,Lagrange] reshist = {} def monitor(ksp, its, fgnorm): reshist[its] = fgnorm print its," OUTER:", fgnorm kspOuter.setMonitor(monitor) kspOuter.max_it = 500 kspInner.max_it = 100 kspOuter.setTolerances(OuterTol) kspInner.setTolerances(InnerTol) pcInner.setType('python') pcInner.setPythonContext(MHDpreconditioner.InnerOuter(A,FFSS,kspF, KSPlinearfluids[0], KSPlinearfluids[1],Fp, HiptmairMatrices[3], HiptmairMatrices[4], HiptmairMatrices[2], HiptmairMatrices[0], HiptmairMatrices[1], HiptmairMatrices[6],1e-4,F)) # OptDB = PETSc.Options() PP = PETSc.Mat().create() PP.setSizes([A.size[0], A.size[0]]) #PP = PETSc.Mat().createPython([A.size[0], A.size[0]]) PP.setType('python') pp = MHDmulti.P(FFSS,A,MatrixLinearFluids[1],MatrixLinearFluids[0],kspFp,HiptmairMatrices[6]) PP.setPythonContext(pp) PP.setUp() kspInner.setOperators(PP,PP) kspInner.setFromOptions() scale = b.norm() b = b/scale del A stime = time.time() kspOuter.solve(b,u) Soltime = time.time()- stime NSits += kspOuter.its Mits += kspInner.its u = u*scale SolutionTime = SolutionTime +Soltime MO.PrintStr("Number of outer iterations ="+str(kspOuter.its),60,"+","\n\n","\n\n") MO.PrintStr("Number of inner iterations ="+str(kspInner.its),60,"+","\n\n","\n\n") u1, p1, b1, r1, eps= Iter.PicardToleranceDecouple(u,x,FSpaces,dim,"2",iter, SaddlePoint = "Yes") p1.vector()[:] += - assemble(p1*dx)/assemble(ones*dx) u_k.assign(u1) p_k.assign(p1) b_k.assign(b1) r_k.assign(r1) uOld= np.concatenate((u_k.vector().array(),b_k.vector().array(),p_k.vector().array(),r_k.vector().array()), axis=0) x = IO.arrayToVec(uOld) XX= np.concatenate((u_k.vector().array(),p_k.vector().array(),b_k.vector().array(),r_k.vector().array()), axis=0) SolTime[xx-1] = SolutionTime/iter NSave[xx-1] = (float(NSits)/iter) Mave[xx-1] = (float(Mits)/iter) iterations[xx-1] = iter TotalTime[xx-1] = time.time() - TotalStart dim = [Velocity.dim(), Pressure.dim(), Magnetic.dim(),Lagrange.dim()] # # ExactSolution = [u0,p0,b0,r0] # errL2u[xx-1], errH1u[xx-1], errL2p[xx-1], errL2b[xx-1], errCurlb[xx-1], errL2r[xx-1], errH1r[xx-1] = Iter.Errors(XX,mesh,FSpaces,ExactSolution,order,dim, "DG") # # if xx > 1: # l2uorder[xx-1] = np.abs(np.log2(errL2u[xx-2]/errL2u[xx-1])) # H1uorder[xx-1] = np.abs(np.log2(errH1u[xx-2]/errH1u[xx-1])) # # l2porder[xx-1] = np.abs(np.log2(errL2p[xx-2]/errL2p[xx-1])) # # l2border[xx-1] = np.abs(np.log2(errL2b[xx-2]/errL2b[xx-1])) # Curlborder[xx-1] = np.abs(np.log2(errCurlb[xx-2]/errCurlb[xx-1])) # # l2rorder[xx-1] = np.abs(np.log2(errL2r[xx-2]/errL2r[xx-1])) # H1rorder[xx-1] = np.abs(np.log2(errH1r[xx-2]/errH1r[xx-1])) import pandas as pd # LatexTitles = ["l","DoFu","Dofp","V-L2","L2-order","V-H1","H1-order","P-L2","PL2-order"] # LatexValues = np.concatenate((level,Velocitydim,Pressuredim,errL2u,l2uorder,errH1u,H1uorder,errL2p,l2porder), axis=1) # LatexTable = pd.DataFrame(LatexValues, columns = LatexTitles) # pd.set_option('precision',3) # LatexTable = MO.PandasFormat(LatexTable,"V-L2","%2.4e") # LatexTable = MO.PandasFormat(LatexTable,'V-H1',"%2.4e") # LatexTable = MO.PandasFormat(LatexTable,"H1-order","%1.2f") # LatexTable = MO.PandasFormat(LatexTable,'L2-order',"%1.2f") # LatexTable = MO.PandasFormat(LatexTable,"P-L2","%2.4e") # LatexTable = MO.PandasFormat(LatexTable,'PL2-order',"%1.2f") # print LatexTable # # # print "\n\n Magnetic convergence" # MagneticTitles = ["l","B DoF","R DoF","B-L2","L2-order","B-Curl","HCurl-order"] # MagneticValues = np.concatenate((level,Magneticdim,Lagrangedim,errL2b,l2border,errCurlb,Curlborder),axis=1) # MagneticTable= pd.DataFrame(MagneticValues, columns = MagneticTitles) # pd.set_option('precision',3) # MagneticTable = MO.PandasFormat(MagneticTable,"B-Curl","%2.4e") # MagneticTable = MO.PandasFormat(MagneticTable,'B-L2',"%2.4e") # MagneticTable = MO.PandasFormat(MagneticTable,"L2-order","%1.2f") # MagneticTable = MO.PandasFormat(MagneticTable,'HCurl-order',"%1.2f") # print MagneticTable # # # # # import pandas as pd # print "\n\n Iteration table" if IterType == "Full": IterTitles = ["l","DoF","AV solve Time","Total picard time","picard iterations","Av Outer its","Av Inner its",] else: IterTitles = ["l","DoF","AV solve Time","Total picard time","picard iterations","Av NS iters","Av M iters"] IterValues = np.concatenate((level,Wdim,SolTime,TotalTime,iterations,NSave,Mave),axis=1) IterTable= pd.DataFrame(IterValues, columns = IterTitles) if IterType == "Full": IterTable = MO.PandasFormat(IterTable,'Av Outer its',"%2.1f") IterTable = MO.PandasFormat(IterTable,'Av Inner its',"%2.1f") else: IterTable = MO.PandasFormat(IterTable,'Av NS iters',"%2.1f") IterTable = MO.PandasFormat(IterTable,'Av M iters',"%2.1f") print IterTable.to_latex() print " \n Outer Tol: ",OuterTol, "Inner Tol: ", InnerTol # # # if (ShowResultPlots == 'yes'): # plot(u_k) # plot(interpolate(u0,Velocity)) # # plot(p_k) # # plot(interpolate(p0,Pressure)) # # plot(b_k) # plot(interpolate(b0,Magnetic)) # # plot(r_k) # plot(interpolate(r0,Lagrange)) # # interactive() interactive()
TotalStart =time.time() SolutionTime = 0 while eps > tol and iter < maxiter: iter += 1 MO.PrintStr("Iter "+str(iter),7,"=","\n\n","\n\n") tic() if IterType == "CD": bb = assemble((Lmaxwell + Lns) - RHSform) for bc in bcs: bc.apply(bb) A,b = CP.Assemble(AA,bb) # if iter == 1 if iter == 1: u = b.duplicate() F = A.getSubMatrix(u_is,u_is) kspF = NSprecondSetup.LSCKSPnonlinear(F) else: AA, bb = assemble_system(maxwell+ns+CoupleTerm, (Lmaxwell + Lns) - RHSform, bcs) A,b = CP.Assemble(AA,bb) F = A.getSubMatrix(u_is,u_is) kspF = NSprecondSetup.LSCKSPnonlinear(F) # if iter == 1: if iter == 1: u = b.duplicate() print ("{:40}").format("MHD assemble, time: "), " ==> ",("{:4f}").format(toc()), ("{:9}").format(" time: "), ("{:4}").format(time.strftime('%X %x %Z')[0:5]) kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k) print "Inititial guess norm: ", u.norm() stime = time.time() # ksp.solve(b, u)
Bt = PP[0:V.dim(), V.dim():W.dim()] d = spdiags(1.0 / Xdiag, 0, len(Xdiag), len(Xdiag)) dBt = (d * Bt).tocsr() plt.spy(dBt) plt.show() BQB = Bt.transpose() * dBt dBt = PETSc.Mat().createAIJ(size=dBt.shape, csr=(dBt.indptr, dBt.indices, dBt.data)) print dBt.size BQB = PETSc.Mat().createAIJ(size=BQB.tocsr().shape, csr=(BQB.tocsr().indptr, BQB.tocsr().indices, BQB.tocsr().data)) # parameters['linear_algebra_backend'] = 'PETSc' kspBQB = NSprecondSetup.Ksp(BQB) elif Solver == "PCD": N = FacetNormal(mesh) h = CellSize(mesh) h_avg = avg(h) alpha = 10.0 gamma = 10.0 (pQ) = TrialFunction(Q) (qQ) = TestFunction(Q) print MU Mass = assemble(inner(pQ, qQ) * dx) L = MU * (inner(grad(qQ), grad(pQ)) * dx(mesh)) # O = - dot(u_k, n)*pQ('+')*qQ*ds(mesh) - dot(u_k, n)*(pQ('+') - pQ('-'))*qQ('-')*dS(mesh) pp = Function(Q)
Bt = PP[0:V.dim(),V.dim():W.dim()] d = spdiags(1.0/Xdiag, 0, len(Xdiag), len(Xdiag)) dBt = (d*Bt).tocsr() print Bt.transpose()*dBt.todense() plt.spy(dBt) plt.show() BQB = Bt.transpose()*dBt dBt = PETSc.Mat().createAIJ(size=dBt.shape,csr=(dBt.indptr, dBt.indices, dBt.data)) print dBt.size BQB = PETSc.Mat().createAIJ(size=BQB.tocsr().shape,csr=(BQB.tocsr().indptr, BQB.tocsr().indices, BQB.tocsr().data)) # parameters['linear_algebra_backend'] = 'PETSc' kspBQB = NSprecondSetup.LSCKSPlinear(BQB) elif Solver == "PCD": N = FacetNormal(mesh) h = CellSize(mesh) h_avg =avg(h) alpha = 10.0 gamma =10.0 (pQ) = TrialFunction(Q) (qQ) = TestFunction(Q) print MU Mass = assemble(inner(pQ,qQ)*dx) L = MU*(inner(grad(qQ), grad(pQ))*dx(mesh)) # O = - dot(u_k, n)*pQ('+')*qQ*ds(mesh) - dot(u_k, n)*(pQ('+') - pQ('-'))*qQ('-')*dS(mesh) pp = Function(Q)
Mass = assemble(inner(u,v)*dx) B = assemble(-div(v)*p*dx) bc = DirichletBC(V,Expression(("0.0","0.0")), boundary) #bc.apply(Mass) Mass = Mass.sparray() MassD = Mass.diagonal() del Mass B = B.sparray() d = spdiags(1.0/MassD, 0, len(MassD), len(MassD)) QB = d*B L = B.transpose()*QB L = PETSc.Mat().createAIJ(size=L.shape,csr=(L.indptr, L.indices, L.data)) QB = PETSc.Mat().createAIJ(size=QB.shape,csr=(QB.indptr, QB.indices, QB.data)) KspL = NSsetup.Ksp(L) elif Solver == "PCD": (pQ) = TrialFunction(Q) (qQ) = TestFunction(Q) print MU Mass = assemble(inner(pQ,qQ)*dx) L = assemble(inner(grad(pQ),grad(qQ))*dx) fp = MU*inner(grad(qQ), grad(pQ))*dx+inner((u_k[0]*grad(pQ)[0]+u_k[1]*grad(pQ)[1]),qQ)*dx + (1./2)*div(u_k)*inner(pQ,qQ)*dx - (1./2)*(u_k[0]*n[0]+u_k[1]*n[1])*inner(pQ,qQ)*ds L = CP.Assemble(L) Mass = CP.Assemble(Mass) # print L SolutionTime = 0 while eps > tol and iter < maxiter: iter += 1