Beispiel #1
0
def Core_train(in_nodes, hid_nodes, out_nodes, x, y, epochs):
    Core = net.Sequential()
    Core.add(net.DenseLayer(in_nodes, hid_nodes, lr=0.2))
    Core.add(net.ActivationLayer(net.Sigmoid))
    Core.add(net.DenseLayer(hid_nodes, hid_nodes * 2, lr=0.2))
    Core.add(net.ActivationLayer(net.Sigmoid))
    #Core.add(net.DenseLayer(hid_nodes*2,hid_nodes*2,lr = 0.2))
    #Core.add(net.ActivationLayer(net.Sigmoid))
    Core.add(net.DenseLayer(hid_nodes * 2, hid_nodes, lr=0.2))
    Core.add(net.ActivationLayer(net.Sigmoid))
    #Below is the same structure/ similar structure an ocsvm used
    Core.add(net.DenseLayer(hid_nodes, out_nodes * 10, lr=0.3))
    Core.add(net.ActivationLayer(net.Sigmoid))
    Core.add(net.DenseLayer(out_nodes * 10, out_nodes, lr=0.2))

    #To 'pretrain', the specific random data class is extracted for training
    for kll in range(
            10):  #Maximum 20 in this dataset, in fact can set as len(x)

        z = 300
        temp_x = []
        temp_y = []
        label_chosen = y[
            0]  #input("Input the label you want to choose to initiate: ")
        #print("Label chosen: ",label_chosen)
        temp_x, temp_y = Get_Certain_label(x, y, label_chosen,
                                           int(z * (kll + 1)))
        #################
        Core.fit(temp_x, temp_y, epochs)
        prediction = Core.predict(x)
        #print('',y[0])
        Current_Score = Score_Metrics.Score(prediction, label_chosen, y)
        print("")
        print("The following is current score")
        print(Current_Score)
        print("_____________________________________________")
        pass
    return Core
    pass
Beispiel #2
0
def Single_OC_SVM_Train(real_x, y, x, answer_list, CK_T):
    temp = net.Sequential()
    temp.add(net.DenseLayer(hid_nodes, out_nodes * 10, lr=0.3))
    temp.add(net.ActivationLayer(net.Sigmoid))
    temp.add(net.DenseLayer(out_nodes * 10, out_nodes, lr=0.2))
    temp_x = []
    temp_y = []

    while True:
        z = random.randint(0, len(answer_list) - 1)
        if answer_list[z] <= 0:
            temp_x.append(x[z])
            temp_y.append(1)
            break
    while True:  #data extraction, for partial training
        z = random.randint(0, len(answer_list) - 1)
        if answer_list[z] > 0:
            temp_x.append(x[z])
            temp_y.append(-1)

            break
    temp_y = np.asarray(temp_y).reshape(len(temp_y), 1)
    temp.fit(temp_x, temp_y, 50)
    print("")
    Improve_train.Improve_train(x, temp, 100, CK_T)
    prediction = temp.predict(x)
    print(len(prediction))
    #Following is used to supervise the unsupervised network --> how it is doing now --> and have no interference with the code
    if len(prediction) > 0:
        current_label = Score_Metrics.Get_Sample(prediction, real_x, y)
        Current_Score = Score_Metrics.Score(prediction, current_label, y)
        print("")
        print("Current defined answer",
              Score_Metrics.Answer_defined(prediction))
        print("")
        '''
        print("The following is current score after pretrained")  #It seems that it has some problem here.
        print(Current_Score, len(y))
        '''
        print("_____________________________________________")
        #print(prediction)
        return temp
    else:
        print("Error: ", temp.predict(x))