def cycle_hook(state, i): A = 6 if i % 100 == 0: p = Parameters.policy(state) # a1 plt.plot( Parameters.beta * State.w(state).numpy() * (1 - Parameters.beta**(A - 1)) / (1 - Parameters.beta**A), PolicyState.a1(p), 'bs') plt.savefig(Parameters.LOG_DIR + '/a1.png') plt.close() # a2 plt.plot( Parameters.beta * (State.r(state) * State.K2(state)).numpy() * (1 - Parameters.beta**(A - 2)) / (1 - Parameters.beta**(A - 1)), PolicyState.a2(p), 'bs') plt.savefig(Parameters.LOG_DIR + '/a2.png') plt.close() plt.plot( Parameters.beta * (State.r(state) * State.K3(state)).numpy() * (1 - Parameters.beta**(A - 3)) / (1 - Parameters.beta**(A - 2)), PolicyState.a3(p), 'bs') plt.savefig(Parameters.LOG_DIR + '/a3.png') plt.close() plt.plot( Parameters.beta * (State.r(state) * State.K4(state)).numpy() * (1 - Parameters.beta**(A - 4)) / (1 - Parameters.beta**(A - 3)), PolicyState.a4(p), 'bs') plt.savefig(Parameters.LOG_DIR + '/a4.png') plt.close() plt.plot( Parameters.beta * (State.r(state) * State.K5(state)).numpy() * (1 - Parameters.beta**(A - 5)) / (1 - Parameters.beta**(A - 4)), PolicyState.a5(p), 'bs') plt.savefig(Parameters.LOG_DIR + '/a5.png') plt.close()
def equations(state, policy_state): E_t = State.E_t_gen(state, policy_state) loss_dict = {} delta_1 = Definitions.delta_1(state, policy_state) #original equation loss_dict['eq_1'] = E_t(lambda s, ps: PolicyState.Cy(policy_state) * PolicyState.Cy(ps) * PolicyState.lambday(policy_state) - PolicyState.Cy(ps) * State.nux(state) + PolicyState.Cy(policy_state) * beta * b_habit * State.nux (s)) # original eq 1 #loss_dict['eq_1'] = PolicyState.lambday(policy_state) - (State.nux(state) / (PolicyState.Cy(policy_state) )) + beta * b_habit * E_t(lambda s, ps: State.nux (s) / (PolicyState.Cy(ps))) loss_dict['eq_2'] = PolicyState.lambday(policy_state) * PolicyState.Ry(policy_state) - PolicyState.muy(policy_state) * (delta_1 + delta_2 *(PolicyState.uy(policy_state) - 1.0)) loss_dict['eq_3'] = PolicyState.lambday(policy_state) - beta * (1.0 + PolicyState.iy(policy_state)) * E_t(lambda s, ps: (1.0/(1.0 + PolicyState.piy(ps) ))) loss_dict['eq_4'] = PolicyState.lambday(policy_state) - PolicyState.muy(policy_state) * State.Zx(state) * ((1.0 - kappa/2.0 * (PolicyState.Iy(policy_state) - 1.0 )**2.0) - kappa * (PolicyState.Iy(policy_state) - 1.0) * PolicyState.Iy(policy_state)) - beta * E_t(lambda s, ps: PolicyState.muy(ps) * State.Zx(s) * kappa * (PolicyState.Iy(ps) - 1.0) * PolicyState.Iy(ps)**2.0 ) loss_dict['eq_5'] = PolicyState.muy(policy_state) - beta * E_t(lambda s, ps: PolicyState.muy(ps) * PolicyState.Ry(ps) * PolicyState.uy(ps) + PolicyState.muy(ps) * (1.0 - (delta_0 + delta_1 * (PolicyState.uy(ps) - 1.0) + delta_2/2.0 * (PolicyState.uy(ps) - 1.0)**2.0 ))) loss_dict['eq_6'] = PolicyState.h1y(policy_state) * PolicyState.whashy(policy_state)**(eps_w * (1.0 + chi)) - State.nux(state) * State.psix(state) * PolicyState.wy(policy_state)**(eps_w * (1.0 + chi)) * PolicyState.Ny(policy_state)**(1.0 + chi) - phi_w * beta * (1.0 + PolicyState.piy(policy_state))**(-zeta_w * eps_w * ( 1.0 + chi )) * E_t(lambda s, ps: (1.0 + PolicyState.piy(ps))**(eps_w * (1.0 + chi)) * PolicyState.whashy(ps)**(eps_w * (1.0 + chi)) * PolicyState.h1y(ps)) loss_dict['eq_7'] = PolicyState.h2y(policy_state) * PolicyState.whashy(policy_state)**eps_w - PolicyState.lambday(policy_state) * PolicyState.wy(policy_state)**eps_w * PolicyState.Ny(policy_state) - phi_w * beta * (1.0 - PolicyState.piy(policy_state))**(zeta_w * (1.0 - eps_w)) * E_t(lambda s, ps: (1.0 + PolicyState.piy(ps))**(eps_w -1.0 ) * PolicyState.whashy(ps)**eps_w * PolicyState.h2y(ps)) loss_dict['eq_8'] = PolicyState.whashy(policy_state) * PolicyState.h2y(policy_state) - ( eps_w / (eps_w - 1.0)) * PolicyState.h1y(policy_state) loss_dict['eq_9'] = PolicyState.wy(policy_state) * PolicyState.Ny(policy_state) - ((1.0 - alpha) / alpha) * PolicyState.Khaty(policy_state) * PolicyState.Ry(policy_state) loss_dict['eq_10'] = (1.0 - alpha) * State.Ax(state) * PolicyState.mcy(policy_state) * PolicyState.Khaty(policy_state)**alpha - PolicyState.wy(policy_state) * PolicyState.Ny(policy_state)**alpha loss_dict['eq_11'] = PolicyState.x1y(policy_state) - PolicyState.lambday(policy_state) * PolicyState.mcy(policy_state) * PolicyState.Yy(policy_state) - phi_p * beta * (1.0 + PolicyState.piy(policy_state))**(-zeta_p * eps_p) * E_t(lambda s, ps: (1.0 + PolicyState.piy(ps))**eps_p * PolicyState.x1y(ps) ) loss_dict['eq_12'] = PolicyState.x2y(policy_state) - PolicyState.lambday(policy_state) * PolicyState.Yy(policy_state) - phi_p * beta * ( 1.0 + PolicyState.piy(policy_state))**(zeta_p *(1.0 - eps_p)) * E_t(lambda s, ps: (1.0 + PolicyState.piy(ps))**(eps_p - 1.0) * PolicyState.x2y(ps)) loss_dict['eq_13'] = ((1.0 + PolicyState.pihashy(policy_state)) * PolicyState.x2y(policy_state) - (eps_p / (eps_p - 1.0)) * (1.0 + PolicyState.piy(policy_state))* PolicyState.x1y(policy_state)) loss_dict['eq_14'] = PolicyState.Yy(policy_state) - PolicyState.Cy(policy_state) - b_habit * State.Cx(state) - PolicyState.Iy(policy_state) * State.Ix(state) - State.Gx(state) loss_dict['eq_15'] = PolicyState.Ky(policy_state) - State.Zx(state) * (1.0 - kappa/2.0 * (PolicyState.Iy(policy_state) - 1.0 )**2.0) * PolicyState.Iy(policy_state)*State.Ix(state) - (1.0 - (delta_0 + delta_1 * (PolicyState.uy(policy_state) - 1.0) + delta_2/2.0 * (PolicyState.uy(policy_state) - 1.0)**2.0)) * State.Kx(state) loss_dict['eq_16'] = State.Ax(state) * PolicyState.Khaty(policy_state)**alpha * PolicyState.Ny(policy_state)**(1.0 - alpha) - F_prod - PolicyState.Yy(policy_state) * PolicyState.nupy(policy_state) loss_dict['eq_17'] = PolicyState.Khaty(policy_state) - PolicyState.uy(policy_state) * State.Kx(state) loss_dict['eq_18'] = PolicyState.nupy(policy_state) * (1.0 + PolicyState.piy(policy_state))**(- eps_p) - (1.0 - phi_p) * (1.0 + PolicyState.pihashy(policy_state))**(- eps_p) - (1.0 + State.pix(state))**(-zeta_p*eps_p) * phi_p * State.nupx(state) loss_dict['eq_19'] = (1.0 + PolicyState.piy(policy_state))**(1.0 - eps_p) - (1.0 - phi_p) * (1.0 + PolicyState.pihashy(policy_state) )**(1.0 - eps_p) - (1.0 + State.pix(state))**(zeta_p * (1.0 - eps_p)) * phi_p loss_dict['eq_20'] = PolicyState.wy(policy_state)**(1.0 - eps_w) - (1.0 - phi_w)*PolicyState.whashy(policy_state)**(1.0 - eps_w) - (1.0 + State.pix(state))**(zeta_w * (1.0 - eps_w)) * phi_w * (1.0 + PolicyState.piy(policy_state))**(eps_w - 1.0) * State.wx(state)**(1.0 - eps_w) loss_dict['eq_21'] = PolicyState.iy(policy_state) - tf.math.maximum((1.0 - rho_i) * i_ss + rho_i * State.ix(state) + (1.0 - rho_i) * (phi_pi * (PolicyState.piy(policy_state) - pi_ss) + phi_y * (tf.math.log(PolicyState.Yy(policy_state)) - tf.math.log(State.Yx(state))) + State.mx(state)), i_LB ) return loss_dict
def nupy_norm(state, policy_state): return PolicyState.nupy(policy_state) * nupy_ss
def Yy_norm(state, policy_state): return PolicyState.Yy(policy_state) * Yy_ss
def x2y_norm(state, policy_state): return PolicyState.x1y(policy_state) * x2y_ss
def muy_norm(state, policy_state): return PolicyState.muy(policy_state) * muy_ss
def equations(state, policy_state): E_t = State.E_t_gen(state, policy_state) loss_dict = {} weight = 1.0 weight2 = 1.0 Ky = Definitions.Ky(state, policy_state) iy = Definitions.iy(state, policy_state) #original equation loss_dict['eq_1'] = 1000 * E_t( lambda s, ps: PolicyState.Cy(policy_state) * PolicyState.Cy( ps) * PolicyState.lambday(policy_state) - PolicyState.Cy( ps) * State.nux(state) + PolicyState.Cy( policy_state) * beta * b_habit * State.nux(s)) # original eq 1 #loss_dict['eq_1'] = PolicyState.lambday(policy_state) - (State.nux(state) / (PolicyState.Cy(policy_state) )) + beta * b_habit * E_t(lambda s, ps: State.nux (s) / (PolicyState.Cy(ps))) # original eq 1 1/C #loss_dict['eq_1'] = PolicyState.lambday(policy_state) - (State.nux(state) / (PolicyState.Cy(policy_state) )) + beta * b_habit * E_t(lambda s, ps: State.nux (s) / ((weight*(PolicyState.Cy(ps)) + (1-weight)*0.025))) ## debug # replace (PolicyState.Cy(ps)) with (weight*(PolicyState.Cy(ps)) + (1-weight)*0.025) -- E() #loss_dict['eq_1'] = E_t(lambda s, ps: PolicyState.Cy(policy_state) * (weight*(PolicyState.Cy(ps)) + (1-weight)*0.025) * PolicyState.lambday(policy_state) - (weight*(PolicyState.Cy(ps)) + (1-weight)*0.025) * State.nux(state) + PolicyState.Cy(policy_state) * beta * b_habit * State.nux (s)) #loss_dict['eq_2'] = PolicyState.lambday(policy_state) - beta * (1.0 + PolicyState.iy(policy_state)) * E_t(lambda s, ps: PolicyState.lambday(ps)*(1.0/(1.0 + PolicyState.piy(ps) ))) # debug: replace PolicyState.lambday(ps) with (weight*(PolicyState.lambday(ps)) + (1-weight)*2.6206) loss_dict['eq_2'] = PolicyState.lambday(policy_state) - beta * ( 1.0 + iy) * E_t(lambda s, ps: (weight * (PolicyState.lambday(ps)) + (1 - weight) * 2.6206) * (1.0 / (1.0 + PolicyState.piy(ps)))) loss_dict['eq_3'] = PolicyState.lambday( policy_state ) - PolicyState.muy(policy_state) * State.Zx(state) * ( (1.0 - kappa / 2.0 * (PolicyState.Iy(policy_state) / State.Ix(state) - 1.0)**2.0) - kappa * (PolicyState.Iy(policy_state) / State.Ix(state) - 1.0) * PolicyState.Iy(policy_state) / State.Ix(state)) - beta * E_t( lambda s, ps: (weight * (PolicyState.muy(ps)) + (1 - weight) * 2.6206) * State.Zx(s) * kappa * ((weight2 * (PolicyState.Iy(ps)) + (1 - weight2) * 0.1881) / PolicyState.Iy(policy_state) - 1.0) * ((weight2 * (PolicyState.Iy(ps)) + (1 - weight2) * 0.1881) / PolicyState.Iy(policy_state))**2.0) # debug: replace PolicyState.muy(ps) with (weight*(PolicyState.muy(ps)) + (1-weight)*2.6206) loss_dict['eq_4'] = PolicyState.muy(policy_state) - beta * E_t( lambda s, ps: PolicyState.lambday(ps) * PolicyState.Ry(ps) + (weight * (PolicyState.muy(ps)) + (1 - weight) * 2.6206) * (1.0 - delta_0)) loss_dict['eq_5'] = 10 * ( PolicyState.h1y(policy_state) * PolicyState.whashy(policy_state)** (eps_w * (1.0 + chi)) - State.nux(state) * State.psix(state) * PolicyState.wy(policy_state)** (eps_w * (1.0 + chi)) * PolicyState.Ny(policy_state)**(1.0 + chi) - phi_w * beta * (1.0 + PolicyState.piy(policy_state))** (-zeta_w * eps_w * (1.0 + chi)) * E_t(lambda s, ps: (1.0 + PolicyState.piy(ps))** (eps_w * (1.0 + chi)) * PolicyState.whashy(ps)** (eps_w * (1.0 + chi)) * PolicyState.h1y(ps))) loss_dict['eq_6'] = 10 * ( PolicyState.h2y(policy_state) * PolicyState.whashy(policy_state)**eps_w - PolicyState.lambday(policy_state) * PolicyState.wy(policy_state)** eps_w * PolicyState.Ny(policy_state) - phi_w * beta * (1.0 - PolicyState.piy(policy_state))**(zeta_w * (1.0 - eps_w)) * E_t(lambda s, ps: (1.0 + PolicyState.piy(ps))**(eps_w - 1.0) * PolicyState.whashy(ps)**eps_w * PolicyState.h2y(ps))) loss_dict['eq_7'] = PolicyState.whashy(policy_state) * PolicyState.h2y( policy_state) - (eps_w / (eps_w - 1.0)) * PolicyState.h1y(policy_state) loss_dict['eq_8'] = PolicyState.wy(policy_state) * PolicyState.Ny( policy_state) - ( (1.0 - alpha) / alpha) * Ky * PolicyState.Ry(policy_state) loss_dict['eq_9'] = (1.0 - alpha) * State.Ax(state) * PolicyState.mcy( policy_state) * Ky**alpha - PolicyState.wy( policy_state) * PolicyState.Ny(policy_state)**alpha loss_dict['eq_10'] = 100 * ( PolicyState.x1y(policy_state) - PolicyState.lambday(policy_state) * PolicyState.mcy(policy_state) * PolicyState.Yy(policy_state) - phi_p * beta * (1.0 + PolicyState.piy(policy_state))**(-zeta_p * eps_p) * E_t(lambda s, ps: (1.0 + PolicyState.piy(ps))**eps_p * PolicyState.x1y(ps))) loss_dict['eq_11'] = 10 * ( PolicyState.x2y(policy_state) - PolicyState.lambday(policy_state) * PolicyState.Yy(policy_state) - phi_p * beta * (1.0 + PolicyState.piy(policy_state))** (zeta_p * (1.0 - eps_p)) * E_t(lambda s, ps: (1.0 + PolicyState.piy(ps))** (eps_p - 1.0) * PolicyState.x2y(ps))) loss_dict['eq_12'] = 100 * ( (1.0 + PolicyState.pihashy(policy_state)) * PolicyState.x2y(policy_state) - (eps_p / (eps_p - 1.0)) * (1.0 + PolicyState.piy(policy_state)) * PolicyState.x1y(policy_state)) loss_dict['eq_13'] = PolicyState.Yy(policy_state) - PolicyState.Cy( policy_state) - b_habit * State.Cx(state) - PolicyState.Iy( policy_state) - State.Gx(state) #original Eq. #loss_dict['eq_14'] = PolicyState.Ky(policy_state) - State.Zx(state) * (1.0 - kappa/2.0 * (PolicyState.Iy(policy_state)/State.Ix(state) - 1.0 )**2.0) * PolicyState.Iy(policy_state) - (1.0 - delta_0) * State.Kx(state) loss_dict['eq_14'] = State.Ax(state) * Ky**alpha * PolicyState.Ny( policy_state)**(1.0 - alpha) - F_prod - PolicyState.Yy( policy_state) * PolicyState.nupy(policy_state) loss_dict['eq_15'] = PolicyState.nupy(policy_state) * ( 1.0 + PolicyState.piy(policy_state))**(-eps_p) - (1.0 - phi_p) * ( 1.0 + PolicyState.pihashy(policy_state))**(-eps_p) - ( 1.0 + State.pix(state))**(-zeta_p * eps_p) * phi_p * State.nupx(state) loss_dict['eq_16'] = (1.0 + PolicyState.piy(policy_state))**( 1.0 - eps_p) - (1.0 - phi_p) * (1.0 + PolicyState.pihashy(policy_state))**( 1.0 - eps_p) - (1.0 + State.pix(state))**(zeta_p * (1.0 - eps_p)) * phi_p loss_dict['eq_17'] = PolicyState.wy(policy_state)**(1.0 - eps_w) - ( 1.0 - phi_w) * PolicyState.whashy(policy_state)**(1.0 - eps_w) - ( 1.0 + State.pix(state))**(zeta_w * (1.0 - eps_w)) * phi_w * ( 1.0 + PolicyState.piy(policy_state))**( eps_w - 1.0) * State.wx(state)**(1.0 - eps_w) #original Eq., substituted #loss_dict['eq_18'] = PolicyState.iy(policy_state) - tf.math.maximum((1.0 - rho_i) * i_ss + rho_i * State.ix(state) + (1.0 - rho_i) * (phi_pi * (PolicyState.piy(policy_state) - pi_ss) + phi_y * (tf.math.log(PolicyState.Yy(policy_state)) - tf.math.log(State.Yx(state))) + State.mx(state)), i_LB ) return loss_dict
return Parameters.alpha * State.TFP(state) * Definitions.K_total( state, None)**(Parameters.alpha - 1) + (1 - State.depr(state)) def w(state, policy_state=None): return (1 - Parameters.alpha) * State.TFP(state) * Definitions.K_total( state, None)**Parameters.alpha def Y(state, policy_state=None): return State.TFP(state) * Definitions.K_total( state, None)**Parameters.alpha + ( 1 - State.depr(state)) * Definitions.K_total(state, None) # consumption definitions for i in range(1, 7): # only youngest generation has labour income if i == 1: setattr(sys.modules[__name__], "c" + str(i), lambda s, ps: w(s, ps) - PolicyState.a1(ps)) if i > 1 and i < 6: setattr(sys.modules[__name__], "c" + str(i), (lambda ind: lambda s, ps: r(s, ps) * getattr( State, "K" + str(ind)) (s) - getattr(PolicyState, "a" + str(ind))(ps))(i)) if i == 6: # consume everything setattr(sys.modules[__name__], "c" + str(i), lambda s, ps: r(s, ps) * State.K6(s))
def whashy_norm(state, policy_state): return PolicyState.whashy(policy_state) * whashy_ss
def wy_norm(state, policy_state): return PolicyState.wy(policy_state) * wy_ss
def Iy_norm(state, policy_state): return PolicyState.Iy(policy_state) * Iy_ss
def Ry_norm(state, policy_state): return PolicyState.Ry(policy_state) * (Ry_ss + 1.0) - 1.0
def pihashy_norm(state, policy_state): return PolicyState.pihashy(policy_state) * (pihashy_ss + 1.0) - 1.0
def Cy_norm(state, policy_state): return PolicyState.Cy(policy_state) * Cy_ss
def equations(state, policy_state): E_t = State.E_t_gen(state, policy_state) loss_dict = {} delta_1 = 1.0/beta - (1.0 - delta_0) #delta_1 = Definitions.delta_1(state, policy_state) weight = 0.6 #original equation #loss_dict['eq_1'] = tf.exp(E_t(lambda s, ps: PolicyState.Cy(policy_state) * PolicyState.Cy(ps) * PolicyState.lambday(policy_state) - PolicyState.Cy(ps) * State.nux(state) + PolicyState.Cy(policy_state) * beta * b_habit * State.nux (s))) - 1.0 # original eq 1 #loss_dict['eq_1'] = PolicyState.lambday(policy_state) - (State.nux(state) / (PolicyState.Cy(policy_state) )) + beta * b_habit * E_t(lambda s, ps: State.nux (s) / (PolicyState.Cy(ps))) # original eq 1 1/C #loss_dict['eq_1'] = PolicyState.lambday(policy_state) - (State.nux(state) / (PolicyState.Cy(policy_state) )) + beta * b_habit * E_t(lambda s, ps: State.nux (s) / ((weight*(PolicyState.Cy(ps)) + (1-weight)*0.025))) # debug # replace (PolicyState.Cy(ps)) with (weight*(PolicyState.Cy(ps)) + (1-weight)*0.025) -- E() loss_dict['eq_1'] = E_t(lambda s, ps: PolicyState.Cy(policy_state) * (weight*(PolicyState.Cy(ps)) + (1-weight)*0.025) * PolicyState.lambday(policy_state) - (weight*(PolicyState.Cy(ps)) + (1-weight)*0.025) * State.nux(state) + PolicyState.Cy(policy_state) * beta * b_habit * State.nux (s)) loss_dict['eq_2'] = PolicyState.lambday(policy_state) * PolicyState.Ry(policy_state) - PolicyState.muy(policy_state) * (delta_1 + delta_2 *(PolicyState.uy(policy_state) - 1.0)) #loss_dict['eq_3'] = PolicyState.lambday(policy_state) - beta * (1.0 + PolicyState.iy(policy_state)) * E_t(lambda s, ps: PolicyState.lambday(ps)*(1.0/(1.0 + PolicyState.piy(ps) ))) # debug: replace PolicyState.piy(ps) with (weight*(PolicyState.piy(ps)) + (1-weight)*0.005) # debug: replace PolicyState.lambday(ps) with (weight*(PolicyState.lambday(ps)) + (1-weight)*2.6206) loss_dict['eq_3'] = PolicyState.lambday(policy_state) - beta * (1.0 + PolicyState.iy(policy_state)) * E_t(lambda s, ps: PolicyState.lambday(ps)*(1.0/(1.0 + (weight*(PolicyState.piy(ps)) + (1-weight)*0.005)))) #loss_dict['eq_4'] = PolicyState.lambday(policy_state) - PolicyState.muy(policy_state) * State.Zx(state) * ((1.0 - kappa/2.0 * (PolicyState.Iy(policy_state)/State.Ix(state) - 1.0 )**2.0) - kappa * (PolicyState.Iy(policy_state)/State.Ix(state) - 1.0) * PolicyState.Iy(policy_state)/State.Ix(state)) - beta * E_t(lambda s, ps: PolicyState.muy(ps) * State.Zx(s) * kappa * (PolicyState.Iy(ps)/PolicyState.Iy(policy_state) - 1.0) * (PolicyState.Iy(ps)/PolicyState.Iy(policy_state))**2.0 ) # debug: replace PolicyState.Iy(ps) with (weight*(PolicyState.Iy(ps)) + (1-weight)*0.1881) # debug: replace PolicyState.muy(ps) with (weight*(PolicyState.muy(ps)) + (1-weight)*2.6206) loss_dict['eq_4'] = PolicyState.lambday(policy_state) - PolicyState.muy(policy_state) * State.Zx(state) * ((1.0 - kappa/2.0 * (PolicyState.Iy(policy_state)/State.Ix(state) - 1.0 )**2.0) - kappa * (PolicyState.Iy(policy_state)/State.Ix(state) - 1.0) * PolicyState.Iy(policy_state)/State.Ix(state)) - beta * E_t(lambda s, ps: (weight*(PolicyState.muy(ps)) + (1-weight)*2.6206) * State.Zx(s) * kappa * ((weight*(PolicyState.Iy(ps)) + (1-weight)*0.1881)/PolicyState.Iy(policy_state) - 1.0) * ((weight*(PolicyState.Iy(ps)) + (1-weight)*0.1881)/PolicyState.Iy(policy_state))**2.0 ) #loss_dict['eq_5'] = PolicyState.muy(policy_state) - beta * E_t(lambda s, ps: PolicyState.lambday(ps) * PolicyState.Ry(ps) * PolicyState.uy(ps) + PolicyState.muy(ps) * (1.0 - (delta_0 + delta_1 * (PolicyState.uy(ps) - 1.0) + delta_2/2.0 * (PolicyState.uy(ps) - 1.0)**2.0 ))) # debug: replace PolicyState.muy(ps) with (weight*(PolicyState.muy(ps)) + (1-weight)*2.6206) # debug: replace PolicyState.uy(ps) with (weight*(PolicyState.uy(ps)) + (1-weight)*1.0) # debug: replace PolicyState.lambday(ps) with (weight*(PolicyState.lambday(ps)) + (1-weight)*2.6206) loss_dict['eq_5'] = PolicyState.muy(policy_state) - beta * E_t(lambda s, ps: (weight*(PolicyState.lambday(ps)) + (1-weight)*2.6206) * PolicyState.Ry(ps) * PolicyState.uy(ps) + (weight*(PolicyState.muy(ps)) + (1-weight)*2.6206) * (1.0 - (delta_0 + delta_1 * ((weight*(PolicyState.uy(ps)) + (1-weight)*1.0) - 1.0) + delta_2/2.0 * ((weight*(PolicyState.uy(ps)) + (1-weight)*1.0) - 1.0)**2.0 ))) #loss_dict['eq_6'] = PolicyState.h1y(policy_state) * PolicyState.whashy(policy_state)**(eps_w * (1.0 + chi)) - State.nux(state) * State.psix(state) * PolicyState.wy(policy_state)**(eps_w * (1.0 + chi)) * PolicyState.Ny(policy_state)**(1.0 + chi) - phi_w * beta * (1.0 + PolicyState.piy(policy_state))**(-zeta_w * eps_w * ( 1.0 + chi )) * E_t(lambda s, ps: (1.0 + PolicyState.piy(ps))**(eps_w * (1.0 + chi)) * PolicyState.whashy(ps)**(eps_w * (1.0 + chi)) * PolicyState.h1y(ps)) # debug: replace PolicyState.whashy(ps) with (weight*(PolicyState.whashy(ps)) + (1-weight)*1.969) # debug: replace PolicyState.h1y(ps) with (weight*(PolicyState.h1y(ps)) + (1-weight)*1.6711) # debug: replace PolicyState.piy(ps) with (weight*(PolicyState.piy(ps)) + (1-weight)*0.005) loss_dict['eq_6'] = PolicyState.h1y(policy_state) * PolicyState.whashy(policy_state)**(eps_w * (1.0 + chi)) - State.nux(state) * State.psix(state) * PolicyState.wy(policy_state)**(eps_w * (1.0 + chi)) * PolicyState.Ny(policy_state)**(1.0 + chi) - phi_w * beta * (1.0 + PolicyState.piy(policy_state))**(-zeta_w * eps_w * ( 1.0 + chi )) * E_t(lambda s, ps: (1.0 + (weight*(PolicyState.piy(ps)) + (1-weight)*0.005))**(eps_w * (1.0 + chi)) * (weight*(PolicyState.whashy(ps)) + (1-weight)*1.969)**(eps_w * (1.0 + chi)) * (weight*(PolicyState.h1y(ps)) + (1-weight)*1.6711)) #loss_dict['eq_7'] = PolicyState.h2y(policy_state) * PolicyState.whashy(policy_state)**eps_w - PolicyState.lambday(policy_state) * PolicyState.wy(policy_state)**eps_w * PolicyState.Ny(policy_state) - phi_w * beta * (1.0 - PolicyState.piy(policy_state))**(zeta_w * (1.0 - eps_w)) * E_t(lambda s, ps: (1.0 + PolicyState.piy(ps))**(eps_w -1.0 ) * PolicyState.whashy(ps)**eps_w * PolicyState.h2y(ps)) # debug: replace PolicyState.whashy(ps) with (weight*(PolicyState.whashy(ps)) + (1-weight)*1.969) # debug: replace PolicyState.h2y(ps) with (weight*(PolicyState.h2y(ps)) + (1-weight)*2.8441) # debug: replace PolicyState.piy(ps) with (weight*(PolicyState.piy(ps)) + (1-weight)*0.005) loss_dict['eq_7'] = PolicyState.h2y(policy_state) * PolicyState.whashy(policy_state)**eps_w - PolicyState.lambday(policy_state) * PolicyState.wy(policy_state)**eps_w * PolicyState.Ny(policy_state) - phi_w * beta * (1.0 - PolicyState.piy(policy_state))**(zeta_w * (1.0 - eps_w)) * E_t(lambda s, ps: (1.0 + (weight*(PolicyState.piy(ps)) + (1-weight)*0.005))**(eps_w -1.0 ) * (weight*(PolicyState.whashy(ps)) + (1-weight)*1.969)**eps_w * (weight*(PolicyState.h2y(ps)) + (1-weight)*2.8441)) loss_dict['eq_8'] = PolicyState.whashy(policy_state) * PolicyState.h2y(policy_state) - ( eps_w / (eps_w - 1.0)) * PolicyState.h1y(policy_state) loss_dict['eq_9'] = PolicyState.wy(policy_state) * PolicyState.Ny(policy_state) - ((1.0 - alpha) / alpha) * PolicyState.Khaty(policy_state) * PolicyState.Ry(policy_state) loss_dict['eq_10'] = (1.0 - alpha) * State.Ax(state) * PolicyState.mcy(policy_state) * PolicyState.Khaty(policy_state)**alpha - PolicyState.wy(policy_state) * PolicyState.Ny(policy_state)**alpha #loss_dict['eq_11'] = PolicyState.x1y(policy_state) - PolicyState.lambday(policy_state) * PolicyState.mcy(policy_state) * PolicyState.Yy(policy_state) - phi_p * beta * (1.0 + PolicyState.piy(policy_state))**(-zeta_p * eps_p) * E_t(lambda s, ps: (1.0 + PolicyState.piy(ps))**eps_p * PolicyState.x1y(ps) ) # debug: replace PolicyState.x1y(ps) with (weight*(PolicyState.x1y(ps)) + (1-weight)*5.3470) # debug: replace PolicyState.piy(ps) with (weight*(PolicyState.piy(ps)) + (1-weight)*0.005) loss_dict['eq_11'] = PolicyState.x1y(policy_state) - PolicyState.lambday(policy_state) * PolicyState.mcy(policy_state) * PolicyState.Yy(policy_state) - phi_p * beta * (1.0 + PolicyState.piy(policy_state))**(-zeta_p * eps_p) * E_t(lambda s, ps: (1.0 + (weight*(PolicyState.piy(ps)) + (1-weight)*0.005))**eps_p * (weight*(PolicyState.x1y(ps)) + (1-weight)*5.3470)) #loss_dict['eq_12'] = PolicyState.x2y(policy_state) - PolicyState.lambday(policy_state) * PolicyState.Yy(policy_state) - phi_p * beta * ( 1.0 + PolicyState.piy(policy_state))**(zeta_p *(1.0 - eps_p)) * E_t(lambda s, ps: (1.0 + PolicyState.piy(ps))**(eps_p - 1.0) * PolicyState.x2y(ps)) # debug: replace PolicyState.x2y(ps) with (weight*(PolicyState.x2y(ps)) + (1-weight)*6.6009) # debug: replace PolicyState.piy(ps) with (weight*(PolicyState.piy(ps)) + (1-weight)*0.005) loss_dict['eq_12'] = PolicyState.x2y(policy_state) - PolicyState.lambday(policy_state) * PolicyState.Yy(policy_state) - phi_p * beta * ( 1.0 + PolicyState.piy(policy_state))**(zeta_p *(1.0 - eps_p)) * E_t(lambda s, ps: (1.0 + (weight*(PolicyState.piy(ps)) + (1-weight)*0.005))**(eps_p - 1.0) * (weight*(PolicyState.x2y(ps)) + (1-weight)*6.6009)) loss_dict['eq_13'] = (1.0 + PolicyState.pihashy(policy_state)) * PolicyState.x2y(policy_state) - (eps_p / (eps_p - 1.0)) * (1.0 + PolicyState.piy(policy_state))* PolicyState.x1y(policy_state) loss_dict['eq_14'] = PolicyState.Yy(policy_state) - PolicyState.Cy(policy_state) - b_habit * State.Cx(state) - PolicyState.Iy(policy_state) - State.Gx(state) loss_dict['eq_15'] = PolicyState.Ky(policy_state) - State.Zx(state) * (1.0 - kappa/2.0 * (PolicyState.Iy(policy_state)/State.Ix(state) - 1.0 )**2.0) * PolicyState.Iy(policy_state) - (1.0 - (delta_0 + delta_1 * (PolicyState.uy(policy_state) - 1.0) + delta_2/2.0 * (PolicyState.uy(policy_state) - 1.0)**2.0)) * State.Kx(state) #loss_dict['eq_15'] = tf.square(PolicyState.Ky(policy_state) - State.Zx(state) * (1.0 - kappa/2.0 * (PolicyState.Iy(policy_state)/State.Ix(state) - 1.0 )**2.0) * PolicyState.Iy(policy_state) - (1.0 - (delta_0 + delta_1 * (PolicyState.uy(policy_state) - 1.0) + delta_2/2.0 * (PolicyState.uy(policy_state) - 1.0)**2.0)) * State.Kx(state)) loss_dict['eq_16'] = State.Ax(state) * PolicyState.Khaty(policy_state)**alpha * PolicyState.Ny(policy_state)**(1.0 - alpha) - F_prod - PolicyState.Yy(policy_state) * PolicyState.nupy(policy_state) loss_dict['eq_17'] = PolicyState.Khaty(policy_state) - PolicyState.uy(policy_state) * State.Kx(state) loss_dict['eq_18'] = PolicyState.nupy(policy_state) * (1.0 + PolicyState.piy(policy_state))**(- eps_p) - (1.0 - phi_p) * (1.0 + PolicyState.pihashy(policy_state))**(- eps_p) - (1.0 + State.pix(state))**(-zeta_p*eps_p) * phi_p * State.nupx(state) loss_dict['eq_19'] = (1.0 + PolicyState.piy(policy_state))**(1.0 - eps_p) - (1.0 - phi_p) * (1.0 + PolicyState.pihashy(policy_state) )**(1.0 - eps_p) - (1.0 + State.pix(state))**(zeta_p * (1.0 - eps_p)) * phi_p loss_dict['eq_20'] = PolicyState.wy(policy_state)**(1.0 - eps_w) - (1.0 - phi_w)*PolicyState.whashy(policy_state)**(1.0 - eps_w) - (1.0 + State.pix(state))**(zeta_w * (1.0 - eps_w)) * phi_w * (1.0 + PolicyState.piy(policy_state))**(eps_w - 1.0) * State.wx(state)**(1.0 - eps_w) loss_dict['eq_21'] = PolicyState.iy(policy_state) - tf.math.maximum((1.0 - rho_i) * i_ss + rho_i * State.ix(state) + (1.0 - rho_i) * (phi_pi * (PolicyState.piy(policy_state) - pi_ss) + phi_y * (tf.math.log(PolicyState.Yy(policy_state)) - tf.math.log(State.Yx(state))) + State.mx(state)), i_LB ) return loss_dict
def equations(state, policy_state): E_t = State.E_t_gen(state, policy_state) loss_dict = {} delta_1 = Definitions.delta_1(state, policy_state) #loss_dict['eq_1'] = PolicyState.lambday(policy_state) - 2.62 loss_dict['eq_1'] = PolicyState.lambday(policy_state) - 1.0 #loss_dict['eq_2'] = PolicyState.muy(policy_state) - 2.62 loss_dict['eq_2'] = PolicyState.muy(policy_state) - 1.0 #loss_dict['eq_3'] = PolicyState.Cy(policy_state) - 0.0247 loss_dict['eq_3'] = PolicyState.Cy(policy_state) - 1.0 #loss_dict['eq_4'] = PolicyState.piy(policy_state) - 0.005 loss_dict['eq_4'] = PolicyState.piy(policy_state) - 1.0 #loss_dict['eq_5'] = PolicyState.pihashy(policy_state) - 0.0176 loss_dict['eq_5'] = PolicyState.pihashy(policy_state) - 1.0 #loss_dict['eq_6'] = PolicyState.Ry(policy_state) - 0.03 loss_dict['eq_6'] = PolicyState.Ry(policy_state) - 1.0 #loss_dict['eq_8'] = PolicyState.uy(policy_state) - 1.0 #loss_dict['eq_7'] = PolicyState.Iy(policy_state) - 0.185 loss_dict['eq_7'] = PolicyState.Iy(policy_state) - 1.0 #loss_dict['eq_8'] = PolicyState.wy(policy_state) - 1.1913 loss_dict['eq_8'] = PolicyState.wy(policy_state) - 1.0 #loss_dict['eq_9'] = PolicyState.whashy(policy_state) - 1.1969 loss_dict['eq_9'] = PolicyState.whashy(policy_state) - 1.0 #loss_dict['eq_10'] = PolicyState.h1y(policy_state) - 1.6711 loss_dict['eq_10'] = PolicyState.h1y(policy_state) - 1.0 #loss_dict['eq_11'] = PolicyState.h2y(policy_state) - 2.8441 loss_dict['eq_11'] = PolicyState.h2y(policy_state) - 1.0 #loss_dict['eq_12'] = PolicyState.Ny(policy_state) - 0.4394 loss_dict['eq_12'] = PolicyState.Ny(policy_state) - 1.0 #loss_dict['eq_15'] = PolicyState.Khaty(policy_state) - 7.47 #loss_dict['eq_16'] = PolicyState.Ky(policy_state) - 7.47 #loss_dict['eq_13'] = PolicyState.mcy(policy_state) - 0.727 loss_dict['eq_13'] = PolicyState.mcy(policy_state) - 1.0 #loss_dict['eq_14'] = PolicyState.x1y(policy_state) - 5.34 loss_dict['eq_14'] = PolicyState.x1y(policy_state) - 1.0 #loss_dict['eq_15'] = PolicyState.x2y(policy_state) - 6.60 loss_dict['eq_15'] = PolicyState.x2y(policy_state) - 1.0 #loss_dict['eq_16'] = PolicyState.Yy(policy_state) - 0.747 loss_dict['eq_16'] = PolicyState.Yy(policy_state) - 1.0 #loss_dict['eq_17'] = PolicyState.nupy(policy_state) - 1.0006 loss_dict['eq_17'] = PolicyState.nupy(policy_state) - 1.0 return loss_dict
def h2y_norm(state, policy_state): return PolicyState.h1y(policy_state) * h2y_ss
def K_total_next(state, policy_state): return PolicyState.a1(policy_state) + PolicyState.a2( policy_state) + PolicyState.a3(policy_state) + PolicyState.a4( policy_state) + PolicyState.a5(policy_state)
def Ny_norm(state, policy_state): return PolicyState.Ny(policy_state) * Ny_ss
def mcy_norm(state, policy_state): return PolicyState.mcy(policy_state) * mcy_ss
def lambday_norm(state, policy_state): return PolicyState.lambday(policy_state) * lambday_ss