def testSimpleSpecfileVersusPyMca(self): import glob import PyMca5 from PyMca5 import PyMcaDataDir from PyMca5.PyMcaIO import specfilewrapper as Specfile fileList = glob.glob(os.path.join(PyMcaDataDir.PYMCA_DATA_DIR, '*.dat')) self.testSimpleSpecfileImport() for filename in fileList: self._sf = self.specfileClass(filename) a = self._sf nScans = a.getNumberOfScans() sf = Specfile.Specfile(filename) for i in range(nScans): scan = sf[i] if PyMca5.version() > "5.1.1": # previous versions of PyMca5 could segfault here labels0 = a.getScanLabels(i) labels1 = scan.alllabels() for j in range(len(labels0)): self.assertEqual(labels0[j], labels1[j], "Read <%s> instead of <%s>" %\ (labels0[j], labels1[j])) data0 = a.getScanData(i) data1 = scan.data().T M = abs(data0 - data1).max() if M > 1.0e-8: raise ValueError("Error reading data")
def testSimpleSpecfileVersusPyMca(self): import glob import PyMca5 from PyMca5 import PyMcaDataDir from PyMca5.PyMcaIO import specfilewrapper as Specfile fileList = glob.glob( os.path.join(PyMcaDataDir.PYMCA_DATA_DIR, '*.dat')) self.testSimpleSpecfileImport() for filename in fileList: self._sf = self.specfileClass(filename) a = self._sf nScans = a.getNumberOfScans() sf = Specfile.Specfile(filename) for i in range(nScans): scan = sf[i] if PyMca5.version() > "5.1.1": # previous versions of PyMca5 could segfault here labels0 = a.getScanLabels(i) labels1 = scan.alllabels() for j in range(len(labels0)): self.assertEqual(labels0[j], labels1[j], "Read <%s> instead of <%s>" %\ (labels0[j], labels1[j])) data0 = a.getScanData(i) data1 = scan.data().T M = abs(data0 - data1).max() if M > 1.0e-8: raise ValueError("Error reading data")
for f in ['qt', 'qttable', 'qtcanvas', 'Qwt5']: excludes.append(f) buildOptions = dict( compressed = True, include_files = include_files, excludes = excludes, includes = includes, #includes = ["scipy.interpolate", "scipy.linalg"] #optimize=2, #packages = packages, #includes = ["Object3D"], #path = [PyMcaDir] + sys.path ) install_dir = PyMcaDir + " " + PyMca5.version() if not sys.platform.startswith('win'): install_dir = install_dir.replace(" ","") if os.path.exists(install_dir): try: def dir_cleaner(directory): for f in glob.glob(os.path.join(directory,'*')): if os.path.isfile(f): try: os.remove(f) except: print("file <%s> not deleted" % f) if os.path.isdir(f): dir_cleaner(f) try: os.rmdir(directory)
packages = ["PyMca5"] # ["silx"] includes = [] # modules excluded from library.zip excludes = ["collections.abc", "tcl", "tk", "OpenGL", "scipy", ] build_options = { "packages": packages, "includes": includes, "include_files": include_files, "excludes": excludes, } #"compressed": True, } install_options = {} executables = [ Executable('scripts/pymca_launcher', # base="Win32GUI" if sys.platform == 'win32' else None, base="Console" if sys.platform == 'win32' else None,) # compress=True) ] setup(name='pymca', version=PyMca5.version(), description="PyMca %s" % PyMca5.version(), options=dict(build_exe=build_options, install_exe=install_options), executables=executables)
def _appendOneResultToHdf5(self, resultDict): # Get all the necessary data (TODO: pass it to method as attrs) idx = self._currentFitIndex end_time = self._currentFitEndTime start_time = self._currentFitStartTime sigma = self._currentSigma legend = self.legends[idx] xlabel = self.xlabels[idx] ylabel = self.ylabels[idx] x, y, _inSigma, xMin, xMax = self.getFitInputValues(idx) fitted_data = self.fit.evaluateDefinedFunction(x) configIni = ConfigDict.ConfigDict(self.fit.getConfiguration()).tostring() fit_paramlist = self.fit.paramlist filename = self.getOutputFileName() # Write the data to file (append) with h5py.File(filename, mode="r+") as h5f: entry = h5f.create_group("fit_curve_%d" % idx) entry.attrs["NX_class"] = to_h5py_utf8("NXentry") entry.attrs["default"] = to_h5py_utf8("fit_process/results/plot") entry.create_dataset("start_time", data=to_h5py_utf8(start_time)) entry.create_dataset("end_time", data=to_h5py_utf8(end_time)) entry.create_dataset("title", data=to_h5py_utf8("Fit of '%s'" % legend)) process = entry.create_group("fit_process") process.attrs["NX_class"] = to_h5py_utf8("NXprocess") process.create_dataset("program", data=to_h5py_utf8("pymca")) process.create_dataset("version", data=to_h5py_utf8(PyMca5.version())) process.create_dataset("date", data=to_h5py_utf8(end_time)) configuration = process.create_group("configuration") configuration.attrs["NX_class"] = to_h5py_utf8("NXnote") configuration.create_dataset("type", data=to_h5py_utf8("text/plain")) configuration.create_dataset("data", data=to_h5py_utf8(configIni)) configuration.create_dataset("file_name", data=to_h5py_utf8("SimpleFit.ini")) configuration.create_dataset("description", data=to_h5py_utf8("Fit configuration")) results = process.create_group("results") results.attrs["NX_class"] = to_h5py_utf8("NXcollection") estimation = results.create_group("estimation") estimation.attrs["NX_class"] = to_h5py_utf8("NXcollection") for p in fit_paramlist: pgroup = estimation.create_group(p["name"]) # constraint code can be an int, convert to str if numpy.issubdtype(numpy.array(p['code']).dtype, numpy.integer): pgroup.create_dataset('code', data=to_h5py_utf8(CONS[p['code']])) else: pgroup.create_dataset('code', data=to_h5py_utf8(p['code'])) pgroup.create_dataset('cons1', data=p['cons1']) pgroup.create_dataset('cons2', data=p['cons2']) pgroup.create_dataset('estimation', data=p['estimation']) for key, value in resultDict.items(): if not numpy.issubdtype(type(key), numpy.character): _logger.debug("skipping key %s (not a text string)", key) continue if key == "fittedvalues": output_key = "parameter_values" elif key == "parameters": output_key = "parameter_names" elif key == "sigma_values": output_key = "parameter_sigmas" else: output_key = key value_dtype = numpy.array(value).dtype if numpy.issubdtype(value_dtype, numpy.number) or\ numpy.issubdtype(value_dtype, numpy.bool_): # straightforward conversion to HDF5 results.create_dataset(output_key, data=value) elif numpy.issubdtype(value_dtype, numpy.character): # ensure utf-8 output results.create_dataset(output_key, data=to_h5py_utf8(value)) plot = results.create_group("plot") plot.attrs["NX_class"] = to_h5py_utf8("NXdata") plot.attrs["signal"] = to_h5py_utf8("raw_data") plot.attrs["auxiliary_signals"] = to_h5py_utf8(["fitted_data"]) plot.attrs["axes"] = to_h5py_utf8(["x"]) plot.attrs["title"] = to_h5py_utf8("Fit of '%s'" % legend) signal = plot.create_dataset("raw_data", data=y) if ylabel is not None: signal.attrs["long_name"] = to_h5py_utf8(ylabel) axis = plot.create_dataset("x", data=x) if xlabel is not None: axis.attrs["long_name"] = to_h5py_utf8(xlabel) if sigma is not None: plot.create_dataset("errors", data=sigma) plot.create_dataset("fitted_data", data=fitted_data)
for f in ['qt', 'qttable', 'qtcanvas', 'Qwt5']: excludes.append(f) buildOptions = dict( compressed=True, include_files=include_files, excludes=excludes, includes=includes, #includes = ["scipy.interpolate", "scipy.linalg"] #optimize=2, #packages = packages, #includes = ["Object3D"], #path = [PyMcaDir] + sys.path ) install_dir = PyMcaDir + " " + PyMca5.version() if not sys.platform.startswith('win'): install_dir = install_dir.replace(" ", "") if os.path.exists(install_dir): try: def dir_cleaner(directory): for f in glob.glob(os.path.join(directory, '*')): if os.path.isfile(f): try: os.remove(f) except: print("file <%s> not deleted" % f) if os.path.isdir(f): dir_cleaner(f) try: