Beispiel #1
0
def find_face_by_mapping(tris):
    # the mid point
    centerPoint = SimpleMath.tuple_numproduct(
        1.0 / 3.0,
        SimpleMath.tuple_plus(
            ModelData.dictVertices[tris[0]],
            SimpleMath.tuple_plus(ModelData.dictVertices[tris[1]], ModelData.dictVertices[tris[2]]),
        ),
    )
    # mapping by distance
    for fKey in ModelData.dictFaces:
        fVertices = ModelData.dictFaces[fKey].get_vids()
        if SimpleMath.is_point_in_triangle_3(
            centerPoint,
            (
                ModelData.dictVertices[fVertices[0]],
                ModelData.dictVertices[fVertices[1]],
                ModelData.dictVertices[fVertices[2]],
            ),
        ):
            return fKey
Beispiel #2
0
def update_stack():
    #init
    sortedTetIDStack = []

    #building a list with all the dictTetrahedrons attached with TMP dictFaces and their volume
    tmpTetIDs = {}
    for fkey in ModelData.listShellFaceIDs:
        #all the facets of a fixed tet are already fix
        if ModelData.dictFaces[fkey].get_tag() == ClassFace.TMP:
            #if (375 in ModelData.dictFaces[fkey].get_vids() or 382 in ModelData.dictFaces[fkey].get_vids()) and 371 in ModelData.dictFaces[fkey].get_vids() and 685 in ModelData.dictFaces[fkey].get_vids():
            #    aaa = 9
            tetList = TetraFunc.find_tetids_by_faceid(fkey, 1)
            tetid = tetList[0]
            tetShellFaceidList = TetraFunc.get_shell_faceids_from_tetid(tetid)
            tetFaceidList = TetraFunc.get_faceids_from_tetid(tetid)#all the known face of this tet
            #degree of freedom
            DoF = 4 - len(tetFaceidList)
            #Carving differential
            CDif = 0
            for f in tetFaceidList:
                if ModelData.dictFaces[f].get_tag() == ClassFace.TMP:
                    CDif = CDif + 1
            CDif = CDif - DoF
            #different configurations of heuristics
            #no heuristics (speedup)
            if not globalHeuristic['validity']:
                sortedTetIDStack.append((tetid,tetShellFaceidList, tetFaceidList))
                return sortedTetIDStack
            #with heuristics (normal)
            if not tmpTetIDs.has_key(tetid):
                if globalHeuristic['volume']:
                    tmpTetIDs[tetid] = (tetShellFaceidList, tetFaceidList, ModelData.dictTetrahedrons[tetid].get_tag(), DoF, CDif, ModelData.dictTetrahedrons[tetid].get_volume()) #volume
                elif globalHeuristic['flatness']:
                    tmpTetIDs[tetid] = (tetShellFaceidList, tetFaceidList, ModelData.dictTetrahedrons[tetid].get_tag(), DoF, CDif, ModelData.dictTetrahedrons[tetid].get_depth(ModelData.dictFaces[fkey].get_vids())/ModelData.dictFaces[fkey].get_area())#flatness
                elif globalHeuristic['depth']:
                    tmpTetIDs[tetid] = (tetShellFaceidList, tetFaceidList, ModelData.dictTetrahedrons[tetid].get_tag(), DoF, CDif, ModelData.dictTetrahedrons[tetid].get_depth(ModelData.dictFaces[fkey].get_vids()))#depth
                elif globalHeuristic['distanceToCenter']:
                    #face center to the model center
                    vids = ModelData.dictFaces[fkey].get_vids()
                    midPt = SimpleMath.tuple_plus(ModelData.dictVertices[vids[0]], ModelData.dictVertices[vids[1]])
                    midPt = SimpleMath.tuple_plus(ModelData.dictVertices[vids[2]], midPt)
                    midPt = SimpleMath.tuple_numproduct(1.0/3.0, midPt)
                    tmpTetIDs[tetid] = (tetShellFaceidList, tetFaceidList, ModelData.dictTetrahedrons[tetid].get_tag(), DoF, CDif, 1.0/SimpleMath.square_dist_point_to_point(midPt, [0.0, 0.0, 0.0]))#reciprocal distanceToCenter
                #tmpTetIDs[tetid] = (tetShellFaceidList, tetFaceidList, ModelData.dictTetrahedrons[tetid].get_tag(), DoF, CDif, ModelData.dictFaces[fkey].get_area())#face area
                else:
                    tmpTetIDs[tetid] = (tetShellFaceidList, tetFaceidList, ModelData.dictTetrahedrons[tetid].get_tag(), DoF, CDif)#simplest
            else:
                #update the exisiting information
                if globalHeuristic['volume']:
                    volume = ModelData.dictTetrahedrons[tetid].get_volume()
                    if DoF < tmpTetIDs[tetid][3] or CDif > tmpTetIDs[tetid][4] or volume > tmpTetIDs[tetid][5]:
                        tmpTetIDs[tetid] = (tetShellFaceidList, tetFaceidList, ModelData.dictTetrahedrons[tetid].get_tag(), DoF, CDif, 1.0/volume) #reciprocal volume
                elif globalHeuristic['flatness']:
                    flatness = ModelData.dictTetrahedrons[tetid].get_depth(ModelData.dictFaces[fkey].get_vids())/ModelData.dictFaces[fkey].get_area()
                    if DoF < tmpTetIDs[tetid][3] or CDif > tmpTetIDs[tetid][4] or flatness < tmpTetIDs[tetid][5]:
                        tmpTetIDs[tetid] = (tetShellFaceidList, tetFaceidList, ModelData.dictTetrahedrons[tetid].get_tag(), DoF, CDif, flatness)#flatness
                elif globalHeuristic['depth']:
                    depth = ModelData.dictTetrahedrons[tetid].get_depth(ModelData.dictFaces[fkey].get_vids())
                    if DoF < tmpTetIDs[tetid][3] or CDif > tmpTetIDs[tetid][4] or depth < tmpTetIDs[tetid][5]:
                        tmpTetIDs[tetid] = (tetShellFaceidList, tetFaceidList, ModelData.dictTetrahedrons[tetid].get_tag(), DoF, CDif, depth)#depth
                elif globalHeuristic['distanceToCenter']:
                    #face center to the model center
                    vids = ModelData.dictFaces[fkey].get_vids()
                    midPt = SimpleMath.tuple_plus(ModelData.dictVertices[vids[0]], ModelData.dictVertices[vids[1]])
                    midPt = SimpleMath.tuple_plus(ModelData.dictVertices[vids[2]], midPt)
                    midPt = SimpleMath.tuple_numproduct(1.0/3.0, midPt)
                    dist = 1.0/SimpleMath.square_dist_point_to_point(midPt, [0.0, 0.0, 0.0])
                    if DoF < tmpTetIDs[tetid][3] or CDif > tmpTetIDs[tetid][4] or dist > tmpTetIDs[tetid][5]: 
                        tmpTetIDs[tetid] = (tetShellFaceidList, tetFaceidList, ModelData.dictTetrahedrons[tetid].get_tag(), DoF, CDif, dist)#reciprocal distanceToCenter

    #sort the dict by the value (volume) and number of neigbour dictFaces into a desascending order
    if not globalHeuristic['volume'] and not globalHeuristic['flatness'] and not globalHeuristic['depth'] and not globalHeuristic['distanceToCenter']:
        for key in tmpTetIDs:
            sortedTetIDStack.append((key, tmpTetIDs[key][0], tmpTetIDs[key][1], tmpTetIDs[key][2], tmpTetIDs[key][3], tmpTetIDs[key][4]))
    else:
        for key in tmpTetIDs:
            sortedTetIDStack.append((key, tmpTetIDs[key][0], tmpTetIDs[key][1], tmpTetIDs[key][2], tmpTetIDs[key][3], tmpTetIDs[key][4], tmpTetIDs[key][5]))
        #sort firstly by fix/tmp, secondly by DoF, thirdly by Cd, lastly by volume
        sortedTetIDStack = sorted(sortedTetIDStack, key=lambda tet: tet[6], reverse = False)#smaller ratio first
        #sortedTetIDStack = sorted(sortedTetIDStack, key=lambda tet: tet[5], reverse = True)#large CDif first
        sortedTetIDStack = sorted(sortedTetIDStack, key=lambda tet: tet[4], reverse = False)#smaller DoF first
        sortedTetIDStack = sorted(sortedTetIDStack, key=lambda tet: tet[5], reverse = True)#large CDif first
        sortedTetIDStack = sorted(sortedTetIDStack, key=lambda tet: tet[3], reverse = True)#TMP tetrahedron first, then INF

    str_out = ("number of candidate tetrahedron: {}").format(len(sortedTetIDStack))
    os.sys.stdout.write(str_out + "\r")
    os.sys.stdout.flush()

    return sortedTetIDStack
Beispiel #3
0
def reader_obj(FILEPATH):
    try:
        f_obj = file(FILEPATH, "r")
    except:
        print ("Invalide file: " + MIDFILEPATH)
        return False
    # read vertics and ModelData.dictFaces
    statFace = 0
    for line in f_obj:
        if line.startswith("v") and line[1] == " ":
            line = line[1:-1].strip()
            vertList = map(float, line.split(" "))
            add_vertexEx([vertList[0], vertList[1], vertList[2]])
        elif line.startswith("f") and line[1] == " ":
            indexList = []
            # to filter out the /
            for index in line[1:-1].strip().split(" "):
                indexList.append(index.split("/")[0])
            statFace = statFace + 1
            if len(indexList) > 2:
                # index - 1
                indexList = [int(i) - 1 for i in indexList]
                add_face(Class_face((indexList[0], indexList[1], indexList[2]), ClassFace.FIX))
    # check the content
    if len(ModelData.dictFaces) == 0 or len(ModelData.dictVertices) == 0:
        print "Invalid Obj file!\n"
        return False
    else:
        print ("Remove " + str(statFace - len(ModelData.dictFaces)) + " invalid ModelData.dictFaces")
        print (
            "Read "
            + str(len(ModelData.dictFaces))
            + " ModelData.dictFaces and "
            + str(len(ModelData.dictVertices))
            + " ModelData.dictVertices"
        )

    f_obj.close()

    # optimise the coordinates by translate and scale
    for key in ModelData.dictVertices:
        ModelData.centerVertex = SimpleMath.tuple_plus(ModelData.centerVertex, ModelData.dictVertices[key])
    ModelData.centerVertex = SimpleMath.tuple_numproduct(1.0 / len(ModelData.dictVertices), ModelData.centerVertex)
    # maxpt = [-9999999999.0, -9999999999.0, -9999999999.0]
    # minpt = [9999999999.0, 9999999999.0, 9999999999.0]
    for key in ModelData.dictVertices:
        ModelData.dictVertices[key] = SimpleMath.tuple_minus(ModelData.dictVertices[key], ModelData.centerVertex)
        # if ModelData.dictVertices[key][0] > maxpt[0]:
        #    maxpt[0] = ModelData.dictVertices[key][0]
        # if ModelData.dictVertices[key][1] > maxpt[1]:
        #    maxpt[1] = ModelData.dictVertices[key][1]
        # if ModelData.dictVertices[key][2] > maxpt[2]:
        #    maxpt[2] = ModelData.dictVertices[key][2]

        # if ModelData.dictVertices[key][0] < minpt[0]:
        #    minpt[0] = ModelData.dictVertices[key][0]
        # if ModelData.dictVertices[key][1] < minpt[1]:
        #    minpt[1] = ModelData.dictVertices[key][1]
        # if ModelData.dictVertices[key][2] < minpt[2]:
        #    minpt[2] = ModelData.dictVertices[key][2]
    # ModelData.scaleVertex = ModelData.scaleVertex / SimpleMath.vector_length_3(SimpleMath.tuple_minus(maxpt, minpt))
    # for key in ModelData.dictVertices:
    #    ModelData.dictVertices[key] = SimpleMath.tuple_numproduct(ModelData.scaleVertex, ModelData.dictVertices[key])
    if ModelData.global_DO_TRUNCATE:
        truncate_verts(ModelData.global_TOL_TRUNCATE)
    print (">>>>>>Eliminate degeneracies...")
    clean_duplicated_vertices()
    print ("{} illshaped ModelData.dictFaces are removed").format(discard_illshaped_faces())
    print (
        "After cleaning redundant ModelData.dictVertices there are "
        + str(len(ModelData.dictFaces))
        + " ModelData.dictFaces and "
        + str(len(ModelData.dictVertices))
        + " ModelData.dictVertices"
    )
    return True
Beispiel #4
0
def optimise_illshaped_shellfaces():
    iCount = 0
    for key in ModelData.listShellFaceIDs:
        if key not in ModelData.dictFaces:
            continue
        if (
            ModelData.global_OPTIMAL_SHP
            and ModelData.dictFaces[key].get_tag() != ClassFace.FLIP
            and ModelData.dictFaces[key].get_area() < ModelData.global_TOL_AREA_DISCARD
        ):
            print key
            vert0 = ModelData.dictVertices[ModelData.dictFaces[key].get_vids()[0]]
            vert1 = ModelData.dictVertices[ModelData.dictFaces[key].get_vids()[1]]
            vert2 = ModelData.dictVertices[ModelData.dictFaces[key].get_vids()[2]]
            # face collapse or flip
            # calculate vectors
            vector01 = SimpleMath.tuple_minus(vert0, vert1)
            length01 = SimpleMath.vector_length_3(vector01)
            if length01 > SimpleMath.Tol:
                vector01 = SimpleMath.tuple_numproduct(1.0 / length01, vector01)
            else:
                iCount += 1
                collapse_edge(ModelData.dictFaces[key].get_vids()[0], ModelData.dictFaces[key].get_vids()[1])
                continue

            vector21 = SimpleMath.tuple_minus(vert2, vert1)
            length21 = SimpleMath.vector_length_3(vector21)
            if length21 > SimpleMath.Tol:
                vector21 = SimpleMath.tuple_numproduct(1.0 / length21, vector21)
            else:
                iCount += 1
                collapse_edge(ModelData.dictFaces[key].get_vids()[2], ModelData.dictFaces[key].get_vids()[1])
                continue

            vector02 = SimpleMath.tuple_minus(vert0, vert2)
            length02 = SimpleMath.vector_length_3(vector02)
            if length02 > SimpleMath.Tol:
                vector02 = SimpleMath.tuple_numproduct(1.0 / length02, vector02)
            else:
                iCount += 1
                collapse_edge(ModelData.dictFaces[key].get_vids()[0], ModelData.dictFaces[key].get_vids()[2])
                continue

            # calculate angles
            Ang012 = SimpleMath.dot_product_3(vector01, vector21)
            Ang102 = SimpleMath.dot_product_3(vector01, vector02)
            vector12 = SimpleMath.tuple_numproduct(-1, vector21)
            Ang021 = SimpleMath.dot_product_3(vector02, vector12)
            # cos value
            if Ang012 < ModelData.global_TOL_LARGEST_ANGLE:
                # flip 20
                iCount += 1
                flip_edge(ModelData.dictFaces[key].get_vids()[2], ModelData.dictFaces[key].get_vids()[0])
            elif Ang102 < ModelData.global_TOL_LARGEST_ANGLE:
                # flip 12
                iCount += 1
                flip_edge(ModelData.dictFaces[key].get_vids()[1], ModelData.dictFaces[key].get_vids()[2])
            elif Ang021 < ModelData.global_TOL_LARGEST_ANGLE:
                # flip 01
                iCount += 1
                flip_edge(ModelData.dictFaces[key].get_vids()[0], ModelData.dictFaces[key].get_vids()[1])
    #
    # clean_unreferenced_vertices()
    print ("{} illshaped ModelData.dictFaces are optimized").format(iCount)
    if iCount > 0:
        return True
    else:
        return False
Beispiel #5
0
def reader_poly_with_semantics(str_filepath):
    fin = file(str_filepath, "r")
    # read the first line and try to extract semantics
    strFirstLine = fin.readline().split()
    if strFirstLine[0] == "#":
        # read the building id
        ModelData.strModelID = strFirstLine[1]
        # whether the geometry is a solid:1 or a multisurface:0
        ModelData.isSolid = fin.readline().split()[1]
        # the point information
        strFirstLine = int(fin.readline().split()[0])
    else:
        # no semanics
        ModelData.strModelID = "-1"
        # we assume it is a solid
        ModelData.isSolid = "1"
        # the point information
        strFirstLine = int(strFirstLine[0])
    # read all the points
    for i in range(strFirstLine):
        vertList = map(float, fin.readline().split()[1:4])
        add_vertexEx((vertList[0], vertList[1], vertList[2]))
    # read each face
    nof = int(fin.readline().split()[0])
    strPolygonid = ""
    strPolygontype = ""
    for i in range(nof):
        strPolygoninfo = fin.readline().split()
        numRings = int(strPolygoninfo[0])
        if numRings != 1:
            print ("The input has not been tesselated")
            return False
        if len(strPolygoninfo) >= 4:
            strPolygonid = strPolygoninfo[3]
        if len(strPolygoninfo) >= 6:
            strPolygontype = strPolygoninfo[5]
        oring = map(int, fin.readline().split())
        if len(oring) > 4:
            print ("The input has not been tesselated")
            return False
        oring.pop(0)
        if len(oring) == 3:
            add_face(Class_face((oring[0], oring[1], oring[2]), ClassFace.FIX, strPolygonid, strPolygontype))

    # check the content
    if len(ModelData.dictFaces) == 0 or len(ModelData.dictVertices) == 0:
        print "Invalid Poly file!\n"
        return False
    else:
        print ("Remove " + str(nof - len(ModelData.dictFaces)) + " invalid Faces")
        print ("Read " + str(len(ModelData.dictFaces)) + " Faces and " + str(len(ModelData.dictVertices)) + " Vertices")
    fin.close()

    # optimise the coordinates by translate and scale
    for key in ModelData.dictVertices:
        ModelData.centerVertex = SimpleMath.tuple_plus(ModelData.centerVertex, ModelData.dictVertices[key])
    ModelData.centerVertex = SimpleMath.tuple_numproduct(1.0 / len(ModelData.dictVertices), ModelData.centerVertex)
    for key in ModelData.dictVertices:
        ModelData.dictVertices[key] = SimpleMath.tuple_minus(ModelData.dictVertices[key], ModelData.centerVertex)
    if ModelData.global_DO_TRUNCATE:
        truncate_verts(ModelData.global_TOL_TRUNCATE)
    print ("--Eliminate degeneracies")
    clean_duplicated_vertices()
    print ("{} illshaped ModelData.dictFaces are removed").format(discard_illshaped_faces())
    print (
        "After cleaning redundant ModelData.dictVertices there are "
        + str(len(ModelData.dictFaces))
        + " Faces and "
        + str(len(ModelData.dictVertices))
        + " Vertices"
    )
    return True