Beispiel #1
0
import sys
sys.path.append('..')
from ABClassifier.ABClassifier import ABClassifier
import numpy as np


ab = ABClassifier()

ab.download_cursors(limit_unlabeled = 1000, limit_labeled = 1000)
ab.run_lsa(k=100)
ab.compute_context_vectors()

pos_labeled_pws = ab.pairwise_similarity(ab.pos_labeled_cv_list)
neg_labeled_pws = ab.pairwise_similarity(ab.neg_labeled_cv_list)
unlabeled_pws = ab.pairwise_similarity(ab.unlabeled_cv_list)

print "done getting pws"

x = np.array(pos_labeled_pws.values())
a = np.asarray(x)
np.savetxt('pos_labeled.csv', a, delimiter=",")

y = np.array(neg_labeled_pws.values())
b = np.asarray(y)
np.savetxt('neg_labeled.csv', b, delimiter=",")

z = np.array(unlabeled_pws.values())
c = np.asarray(z)
np.savetxt('unlabeled.csv', c, delimiter=",")

Beispiel #2
0
import sys
sys.path.append('../..')
from ABClassifier.ABClassifier import ABClassifier
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

save_location = '../../experiment_data/experiment_2'

k_list = [5, 10, 25, 50, 100, 150, 250, 500]

for k in k_list:
    ab = ABClassifier()
    ab.download_cursors(limit_unlabeled=1000, limit_labeled=1000)
    ab.run_lsa(k=k)
    ab.compute_context_vectors(save_location=save_location)

    print "Performing pairwise similarity measures..."

    pos_labeled_pws = cosine_similarity(ab.pos_labeled_cv_list).flatten()
    neg_labeled_pws = cosine_similarity(ab.neg_labeled_cv_list).flatten()
    unlabeled_pws = cosine_similarity(ab.unlabeled_cv_list).flatten()

    print "Done."

    print "Saving..."

    np.savetxt(save_location + '/pw_pos_' + str(k) + '.csv',
               pos_labeled_pws,
               delimiter=",")
    np.savetxt(save_location + '/pw_neg_' + str(k) + '.csv',
Beispiel #3
0
import sys
sys.path.append('..')
from ABClassifier.ABClassifier import ABClassifier
import numpy as np

ab = ABClassifier()

ab.download_cursors(limit_unlabeled=10000, limit_labeled=10000)
ab.run_lsa(k=100)
ab.compute_context_vectors()

pos_labeled_pws = ab.pairwise_similarity(ab.pos_labeled_cv_list)
neg_labeled_pws = ab.pairwise_similarity(ab.neg_labeled_cv_list)
unlabeled_pws = ab.pairwise_similarity(ab.unlabeled_cv_list)

print "done getting pws"

x = np.array(pos_labeled_pws.values())
a = np.asarray(x)
np.savetxt('pos_labeled.csv', a, delimiter=",")

y = np.array(neg_labeled_pws.values())
b = np.asarray(y)
np.savetxt('neg_labeled.csv', b, delimiter=",")

z = np.array(unlabeled_pws.values())
c = np.asarray(z)
np.savetxt('unlabeled.csv', c, delimiter=",")
Beispiel #4
0
    -Vary the number of input tweets to the Co-Occurrence Matrix
"""


import sys
sys.path.append('../..')
from ABClassifier.ABClassifier import ABClassifier
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

save_location = '../../experiment_data/experiment_1b'

ab = ABClassifier()
ab.download_cursors(limit_unlabeled = 2500, limit_labeled = 2500)
ab.run_lsa(k=100)
ab.compute_context_vectors(save_location = save_location)

print "Performing pairwise similarity measures..."

pos_labeled_pws = ab.pairwise_similarity(ab.pos_labeled_cv_list)
neg_labeled_pws = ab.pairwise_similarity(ab.neg_labeled_cv_list)
unlabeled_pws   = ab.pairwise_similarity(ab.unlabeled_cv_list)
#pos_neg_pws     = cosine_similarity(ab.pos_labeled_cv_list, ab.neg_labeled_cv_list)
#pos_unl_pws     = cosine_similarity(ab.pos_labeled_cv_list, ab.unlabeled_cv_list)
#neg_unl_pws     = cosine_similarity(ab.neg_labeled_cv_list, ab.unlabeled_labeled_cv_list)

print "Done."


print "Saving..."