Beispiel #1
0
    coeff_constant.append(const)
    coeff_constant_sepseq.append(const_sepseq)


plot_GAT(np.asarray(coeff_complexity),times,save_folder='/SVM/GAT/',suffix = 'regression_complexity_SW_train_different_blocks',compute_significance=[0,0.6],chance = 0,tail=-1,clim=[-0.005,0.005])
plot_GAT(np.asarray(coeff_constant),times,save_folder='/SVM/GAT/',suffix = 'regression_const_SW_train_different_blocks',compute_significance=[0,0.6],chance = 0,tail=-1)
plot_GAT(np.asarray(coeff_complexity_sepseq),times,save_folder='/SVM/GAT/',suffix = 'regression_complexity_SW_train_different_blocks_and_sequences',compute_significance=[0,0.6],chance = 0,tail=-1,clim=[-0.005,0.005])
plot_GAT(np.asarray(coeff_constant_sepseq),times,save_folder='/SVM/GAT/',suffix = 'regression_const_SW_train_different_blocks_and_sequences',compute_significance=[0,0.6],chance=0,tail=-1)


# ___________________________________________________________________________
# ============== GAT for the different features ===========================
# ___________________________________________________________________________

anal_name = 'feature_decoding/' + "full_data_" + "ordinal_code_quads_tested_others"
SVM_funcs.plot_gat_simple(anal_name, config.subjects_list, "full_data_" + "ordinal_code_quads_tested_others.npy", chance=0.25, score_field='score',
                          vmin=None, vmax=None, compute_significance=[0., 0.6])


vmin = [0.45,0.45,0.45,0.20]
vmax = [0.55,0.55,0.55,0.3]

for residual_analysis in [True]:
    if residual_analysis:
        suffix = 'resid_cv_'
    else:
        suffix = 'full_data_'
    chance = [0.5,0.5,0.5,0.25]

    for ii,name in enumerate(['RepeatAlter_score_dict','ChunkEnd_score_dict','ChunkBeginning_score_dict','WithinChunkPosition_score_dict']):
        anal_name = 'feature_decoding/'+suffix+name
        SVM_funcs.plot_gat_simple(anal_name,config.subjects_list,suffix+name,chance = 0.,score_field='distance',vmin=None,vmax=None,compute_significance=[0.,0.6])
Beispiel #2
0
# ___________________________________________________________________________
# ============== GAT decoding structure ===========================
# ___________________________________________________________________________

for name in [
        'full_data_clean_OpenedChunks_score_dict',
        'full_data_clean_ClosedChunks_score_dict',
        'full_data_clean_ChunkDepth_score_dict'
]:
    anal_name = 'feature_decoding/' + name
    coucou = SVM_funcs.plot_gat_simple(
        anal_name,
        config.subjects_list,
        '/feature_decoding/' +
        name.replace('full_data_clean_', '').replace('_score_dict', '') +
        '/r_',
        chance=0,
        score_field='regression',
        compute_significance=[0, 0.6],
        plot_per_subjects=True,
        vmin=-0.1,
        vmax=0.1)

chances = [0.5, 0.5, 0.5, 0.25]

for ii, name in enumerate([
        'full_data_clean_ChunkBeginning_score_dict',
        'full_data_clean_ChunkEnd_score_dict',
        'full_data_clean_RepeatAlter_score_dict',
        'full_data_clean_WithinChunkPosition_score_dict'
]):
    anal_name = 'feature_decoding/' + name