Beispiel #1
0
def test_resource():
    for i, dtype in enumerate(_dtypes_to_test(use_gpu=is_gpu_available())):
        # Initialize variables for numpy implementation.
        m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
        var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
        grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype)
        var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
        grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype)

        var0 = tf.Variable(var0_np, name="var0_%d" % i)
        var1 = tf.Variable(var1_np, name="var1_%d" % i)
        grads0 = tf.constant(grads0_np)
        grads1 = tf.constant(grads1_np)

        def learning_rate():
            return 0.001

        opt = AdaBeliefOptimizer(learning_rate=learning_rate)

        # Run 3 steps of AdaBelief
        for t in range(3):
            beta_1_power, beta_2_power = get_beta_accumulators(opt, dtype)
            assert_allclose_according_to_type(0.9**(t + 1), beta_1_power)
            assert_allclose_according_to_type(0.999**(t + 1), beta_2_power)

            opt.apply_gradients(zip([grads0, grads1], [var0, var1]))

            var0_np, m0, v0 = adabelief_update_numpy(var0_np, grads0_np, t, m0,
                                                     v0)
            var1_np, m1, v1 = adabelief_update_numpy(var1_np, grads1_np, t, m1,
                                                     v1)

            # Validate updated params
            assert_allclose_according_to_type(var0_np, var0.numpy())
            assert_allclose_according_to_type(var1_np, var1.numpy())
Beispiel #2
0
def test_sharing():
    for dtype in _dtypes_to_test(use_gpu=is_gpu_available()):
        # Initialize variables for numpy implementation.
        m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
        var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
        grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype)
        var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
        grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype)

        var0 = tf.Variable(var0_np)
        var1 = tf.Variable(var1_np)
        grads0 = tf.constant(grads0_np)
        grads1 = tf.constant(grads1_np)
        opt = AdaBeliefOptimizer()

        # Fetch params to validate initial values
        np.testing.assert_allclose(np.asanyarray([1.0, 2.0]), var0.numpy())
        np.testing.assert_allclose(np.asanyarray([3.0, 4.0]), var1.numpy())

        # Run 3 steps of AdaBelief
        for t in range(3):
            beta_1_power, beta_2_power = get_beta_accumulators(opt, dtype)
            assert_allclose_according_to_type(0.9**(t + 1), beta_1_power)
            assert_allclose_according_to_type(0.999**(t + 1), beta_2_power)

            opt.apply_gradients(zip([grads0, grads1], [var0, var1]))

            var0_np, m0, v0 = adabelief_update_numpy(var0_np, grads0_np, t, m0,
                                                     v0)
            var1_np, m1, v1 = adabelief_update_numpy(var1_np, grads1_np, t, m1,
                                                     v1)

            # Validate updated params
            assert_allclose_according_to_type(var0_np, var0.numpy())
            assert_allclose_according_to_type(var1_np, var1.numpy())
Beispiel #3
0
def test_sparse():
    for dtype in _dtypes_to_test(use_gpu=is_gpu_available()):
        # Initialize tf for numpy implementation.
        m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
        var0_np = np.array([1.0, 1.0, 2.0], dtype=dtype.as_numpy_dtype)
        grads0_np = np.array([0.1, 0.0, 0.1], dtype=dtype.as_numpy_dtype)
        var1_np = np.array([3.0, 3.0, 4.0], dtype=dtype.as_numpy_dtype)
        grads1_np = np.array([0.01, 0.0, 0.01], dtype=dtype.as_numpy_dtype)

        var0 = tf.Variable(var0_np)
        var1 = tf.Variable(var1_np)
        grads0_np_indices = np.array([0, 2], dtype=np.int32)
        grads0 = tf.IndexedSlices(
            tf.constant(grads0_np[grads0_np_indices]),
            tf.constant(grads0_np_indices),
            tf.constant([3]),
        )
        grads1_np_indices = np.array([0, 2], dtype=np.int32)
        grads1 = tf.IndexedSlices(
            tf.constant(grads1_np[grads1_np_indices]),
            tf.constant(grads1_np_indices),
            tf.constant([3]),
        )

        epsilon = 1e-7
        optimizer = AdaBeliefOptimizer(epsilon=epsilon)

        # Fetch params to validate initial values
        np.testing.assert_allclose(np.asanyarray([1.0, 1.0, 2.0]),
                                   var0.numpy())
        np.testing.assert_allclose(np.asanyarray([3.0, 3.0, 4.0]),
                                   var1.numpy())

        # Run 3 steps of AdaBelief
        for t in range(3):
            beta_1_power, beta_2_power = get_beta_accumulators(
                optimizer, dtype)
            assert_allclose_according_to_type(0.9**(t + 1), beta_1_power)
            assert_allclose_according_to_type(0.999**(t + 1), beta_2_power)

            optimizer.apply_gradients(zip([grads0, grads1], [var0, var1]))
            var0_np, m0, v0 = adabelief_update_numpy(var0_np,
                                                     grads0_np,
                                                     t,
                                                     m0,
                                                     v0,
                                                     epsilon=epsilon)
            var1_np, m1, v1 = adabelief_update_numpy(var1_np,
                                                     grads1_np,
                                                     t,
                                                     m1,
                                                     v1,
                                                     epsilon=epsilon)
            # Validate updated params
            assert_allclose_according_to_type(var0_np, var0.numpy(), atol=2e-4)
            assert_allclose_according_to_type(var1_np, var1.numpy(), atol=2e-4)
Beispiel #4
0
def test_basic_with_learning_rate_decay():
    for i, dtype in enumerate(_dtypes_to_test(use_gpu=is_gpu_available())):
        # Initialize variables for numpy implementation.
        m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
        var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
        grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype)
        var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
        grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype)

        var0 = tf.Variable(var0_np, name="var0_%d" % i)
        var1 = tf.Variable(var1_np, name="var1_%d" % i)
        grads0 = tf.constant(grads0_np)
        grads1 = tf.constant(grads1_np)

        learning_rate = 0.001
        beta_1 = 0.9
        beta_2 = 0.999
        epsilon = 1e-14
        decay = 0.5
        weight_decay = 0.01

        opt = AdaBeliefOptimizer(
            learning_rate=learning_rate,
            beta_1=beta_1,
            beta_2=beta_2,
            epsilon=epsilon,
            weight_decay=weight_decay,
            decay=decay,
        )

        # Run 3 steps of AdaBelief
        for t in range(3):
            opt.apply_gradients(zip([grads0, grads1], [var0, var1]))

            lr_np = learning_rate / (1 + decay * t)

            var0_np, m0, v0 = adabelief_update_numpy(var0_np,
                                                     grads0_np,
                                                     t,
                                                     m0,
                                                     v0,
                                                     lr=lr_np,
                                                     weight_decay=weight_decay)
            var1_np, m1, v1 = adabelief_update_numpy(var1_np,
                                                     grads1_np,
                                                     t,
                                                     m1,
                                                     v1,
                                                     lr=lr_np,
                                                     weight_decay=weight_decay)

            # Validate updated params
            assert_allclose_according_to_type(var0_np, var0.numpy(), atol=2e-4)
            assert_allclose_according_to_type(var1_np, var1.numpy(), atol=2e-4)