import pylab as pyl
from scalar.units import IN, LBF, SEC, ARCDEG, FT, RPM, OZF, GRAM, gacc, W, K, degR, inHg, MM
from scalar.units import AsUnit

# Set Propeller properties
Prop = ACPropeller()
Prop.name = 'APC 22x10E'
Prop.D = 22 * IN
Prop.Thickness = 0.5 * IN

Prop.Pitch = 10 * IN
Prop.dAlpha = 11 * ARCDEG
Prop.Solidity = 0.0126

Prop.AlphaStall = 20 * ARCDEG
Prop.AlphaZeroCL = 0 * ARCDEG
Prop.CLSlope = .22 / ARCDEG  #- 2D airfoil lift slope
Prop.CDCurve = 2.2  #- 2D curvature of the airfoil drag bucket
Prop.CDp = .02  #- Parasitic drag

Prop.Weight = 240.9 * GRAM * gacc

Prop.ThrustUnit = LBF
Prop.ThrustUnitName = 'lbf'
Prop.PowerUnit = W
Prop.PowerUnitName = 'watt'
Prop.MaxTipSpeed = None
#
# These are corrected for standard day
#
#Second set of data taken - concern about first set since taken at night
Beispiel #2
0
import pylab as pyl
from scalar.units import IN, LBF, SEC, ARCDEG, FT, RPM, OZF, GRAM, gacc, hPa, K, W, inHg
from scalar.units import AsUnit

# Set Propeller properties
Prop = ACPropeller()
Prop.name = 'APC 12.25x3.75 ADV'
Prop.D = 12.25 * IN
Prop.Thickness = 5 / 8 * IN

Prop.Pitch = 3.75 * IN
Prop.dAlpha = 6.25 * ARCDEG  # for correlating
Prop.Solidity = 0.013  # for correlating

Prop.AlphaStall = 18 * ARCDEG  # for correlating
Prop.AlphaZeroCL = 0 * ARCDEG  #- 2D curvature of the airfoil drag bucket
Prop.CLSlope = 0.095 / ARCDEG  #- 2D airfoil lift slope (default 0.068/deg)
Prop.CDCurve = 2.5  #- 2D curvature of the airfoil drag bucket
Prop.CDp = 0.01  #- 2D parasite drag

Prop.Weight = 1.80 * OZF
Prop.WeightGroup = 'Propulsion'

#
# These are corrected for standard day
#Standard correction for 2:00 pm for the test day
#STD = STDCorrection(30.16*inHg, (1.6667 + 273.15)*K)
#
#                  RPM,        Thrust
#Prop.ThrustData = [(13440 *RPM, (10 *LBF + 8*OZF)*STD),
#                   (12340 *RPM, (10 *LBF + 5*OZF)*STD),