def __init__(self, embedding_dim, hidden_dim, max_length): super(Decoder, self).__init__() self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.max_length = max_length self.input_weights = nn.Linear(hidden_dim, 3 * hidden_dim) self.input_weights.weight.readable_name = 'Decoder-ih-w' self.input_weights.bias.readable_name = 'Decoder-ih-b' self.hidden_weights = nn.Linear(hidden_dim, 3 * hidden_dim) self.hidden_weights.weight.readable_name = 'Decoder-hh-w' self.hidden_weights.bias.readable_name = 'Decoder-hh-b' # self.input_reduction = nn.Linear(embedding_dim, hidden_dim) self.pointer_s = Attention(hidden_dim, modulename='Head') self.pointer_e = Attention(hidden_dim, modulename='Tail') # self.encoding_s = torch.nn.Conv1d(hidden_dim, hidden_dim, kernel_size=2, stride=1, padding=0) # set_readable_param_names(self.encoding_s, 'Decoder-encoding-s') self.cls = torch.nn.Conv1d(hidden_dim, 2, kernel_size=3, stride=1, padding=0)
def __init__(self, embedding_dim, hidden_dim, max_length): super(Decoder, self).__init__() self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.max_length = max_length self.input_weights = nn.Linear(hidden_dim, 3 * hidden_dim) self.input_weights.weight.readable_name = 'Decoder-ih-w' self.input_weights.bias.readable_name = 'Decoder-ih-b' self.hidden_weights = nn.Linear(hidden_dim, 3 * hidden_dim) self.hidden_weights.weight.readable_name = 'Decoder-hh-w' self.hidden_weights.bias.readable_name = 'Decoder-hh-b' # self.input_reduction = nn.Linear(embedding_dim, hidden_dim) self.pointer_s = Attention(hidden_dim, modulename='Head') self.pointer_e = Attention(hidden_dim, modulename='Tail') self.cls = torch.nn.Conv1d(2, 2, kernel_size=hidden_dim, stride=1, padding=0) self.cls.weight.readable_name = 'Decoder-ScoreConv-w' self.cls.bias.readable_name = 'Decoder-ScoreConv-b' self.sm = nn.Softmax(dim=1) # prev_v records previous pointed encoding features... # self.prev_s_enc = nn.Parameter(torch.zeros(hidden_dim), requires_grad=False) self.prev_e_enc = nn.Parameter(torch.zeros(hidden_dim), requires_grad=False)
def __init__(self, embedding_dim, hidden_dim, max_length): super(Decoder, self).__init__() self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.max_length = max_length self.input_weights = nn.Linear(embedding_dim, 4 * hidden_dim) self.hidden_weights = nn.Linear(hidden_dim, 4 * hidden_dim) self.pointer_s = Attention(hidden_dim) self.pointer_e = Attention(hidden_dim) self.cls = torch.nn.Conv1d(2, 2, kernel_size=hidden_dim, stride=1, padding=0) self.sm = nn.Softmax(dim=1)
def __init__(self, hidden_dim, max_length): super(Decoder, self).__init__() self.hidden_dim = hidden_dim self.max_length = max_length self.input_weights = nn.Linear(hidden_dim, 3 * hidden_dim) self.input_weights.weight.readable_name = 'Decoder-ih-w' self.input_weights.bias.readable_name = 'Decoder-ih-b' self.hidden_weights = nn.Linear(hidden_dim, 3 * hidden_dim) self.hidden_weights.weight.readable_name = 'Decoder-hh-w' self.hidden_weights.bias.readable_name = 'Decoder-hh-b' # self.input_reduction = nn.Linear(embedding_dim, hidden_dim) self.pointer = Attention(hidden_dim, modulename='pointer') self.cls = torch.nn.Conv1d(2, 2, kernel_size=hidden_dim, stride=1, padding=0) self.cls.weight.readable_name = 'Decoder-ScoreConv-w' self.cls.bias.readable_name = 'Decoder-ScoreConv-b' self.sm = nn.Softmax(dim=1)