Beispiel #1
0
def make_mujoco_env(env_id, seed):
    """
    Create a wrapped, monitored gym.Env for MuJoCo.
    """
    set_global_seeds(seed)
    env = gym.make(env_id)
    env = Monitor(env, logger.get_dir())
    env.seed(seed)
    return env
Beispiel #2
0
def make_robotics_env(env_id, seed, rank=0):
    """
    Create a wrapped, monitored gym.Env for MuJoCo.
    """
    set_global_seeds(seed)
    env = gym.make(env_id)
    env = FlattenDictWrapper(env, ['observation', 'desired_goal'])
    env = Monitor(
        env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)),
        info_keywords=('is_success',))
    env.seed(seed)
    return env
Beispiel #3
0
def make_atari_env(env_id, num_env, seed, wrapper_kwargs=None, start_index=0):
    """
    Create a wrapped, monitored SubprocVecEnv for Atari.
    """
    if wrapper_kwargs is None: wrapper_kwargs = {}
    def make_env(rank): # pylint: disable=C0111
        def _thunk():
            env = make_atari(env_id)
            env.seed(seed + rank)
            env = Monitor(env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)))
            return wrap_deepmind(env, **wrapper_kwargs)
        return _thunk
    set_global_seeds(seed)
    return SubprocVecEnv([make_env(i + start_index) for i in range(num_env)])
Beispiel #4
0
def main(policy_file, seed, n_test_rollouts, render):
    set_global_seeds(seed)

    # Load policy.
    with open(policy_file, 'rb') as f:
        policy = pickle.load(f)
    env_name = policy.info['env_name']

    # Prepare params.
    params = config.DEFAULT_PARAMS
    if env_name in config.DEFAULT_ENV_PARAMS:
        params.update(config.DEFAULT_ENV_PARAMS[env_name]
                      )  # merge env-specific parameters in
    params['env_name'] = env_name
    params = config.prepare_params(params)
    config.log_params(params, logger=logger)

    dims = config.configure_dims(params)

    eval_params = {
        'exploit': True,
        'use_target_net': params['test_with_polyak'],
        'compute_Q': True,
        'rollout_batch_size': 1,
        'render': bool(render),
    }

    for name in ['T', 'gamma', 'noise_eps', 'random_eps']:
        eval_params[name] = params[name]

    evaluator = RolloutWorker(params['make_env'], policy, dims, logger,
                              **eval_params)
    evaluator.seed(seed)

    # Run evaluation.
    evaluator.clear_history()
    for _ in range(n_test_rollouts):
        evaluator.generate_rollouts()

    # record logs
    for key, val in evaluator.logs('test'):
        logger.record_tabular(key, np.mean(val))
    logger.dump_tabular()
Beispiel #5
0
def launch(env_name,
           logdir,
           n_epochs,
           num_cpu,
           seed,
           replay_strategy,
           policy_save_interval,
           clip_return,
           override_params={},
           save_policies=True):
    # Fork for multi-CPU MPI implementation.
    if num_cpu > 1:
        whoami = mpi_fork(num_cpu)
        if whoami == 'parent':
            sys.exit(0)
        import baselines.common.tf_util as U
        U.single_threaded_session().__enter__()
    rank = MPI.COMM_WORLD.Get_rank()

    # Configure logging
    if rank == 0:
        if logdir or logger.get_dir() is None:
            logger.configure(dir=logdir)
    else:
        logger.configure()
    logdir = logger.get_dir()
    assert logdir is not None
    os.makedirs(logdir, exist_ok=True)

    # Seed everything.
    rank_seed = seed + 1000000 * rank
    set_global_seeds(rank_seed)

    # Prepare params.
    params = config.DEFAULT_PARAMS
    params['env_name'] = env_name
    params['replay_strategy'] = replay_strategy
    if env_name in config.DEFAULT_ENV_PARAMS:
        params.update(config.DEFAULT_ENV_PARAMS[env_name]
                      )  # merge env-specific parameters in
    params.update(
        **override_params)  # makes it possible to override any parameter
    with open(os.path.join(logger.get_dir(), 'params.json'), 'w') as f:
        json.dump(params, f)
    params = config.prepare_params(params)
    config.log_params(params, logger=logger)

    dims = config.configure_dims(params)
    policy = config.configure_ddpg(dims=dims,
                                   params=params,
                                   clip_return=clip_return)

    rollout_params = {
        'exploit': False,
        'use_target_net': False,
        'use_demo_states': True,
        'compute_Q': False,
        'T': params['T'],
    }

    eval_params = {
        'exploit': True,
        'use_target_net': params['test_with_polyak'],
        'use_demo_states': False,
        'compute_Q': True,
        'T': params['T'],
    }

    for name in [
            'T', 'rollout_batch_size', 'gamma', 'noise_eps', 'random_eps'
    ]:
        rollout_params[name] = params[name]
        eval_params[name] = params[name]

    rollout_worker = RolloutWorker(params['make_env'], policy, dims, logger,
                                   **rollout_params)
    rollout_worker.seed(rank_seed)

    evaluator = RolloutWorker(params['make_env'], policy, dims, logger,
                              **eval_params)
    evaluator.seed(rank_seed)

    train(logdir=logdir,
          policy=policy,
          rollout_worker=rollout_worker,
          evaluator=evaluator,
          n_epochs=n_epochs,
          n_test_rollouts=params['n_test_rollouts'],
          n_cycles=params['n_cycles'],
          n_batches=params['n_batches'],
          policy_save_interval=policy_save_interval,
          save_policies=save_policies)
Beispiel #6
0
def launch(env_name,
           logdir,
           n_epochs,
           num_cpu,
           seed,
           replay_strategy,
           policy_save_interval,
           clip_return,
           temperature,
           prioritization,
           binding,
           logging,
           version,
           dump_buffer,
           n_cycles,
           rank_method,
           fit_interval,
           override_params={},
           save_policies=True):

    # Fork for multi-CPU MPI implementation.
    if num_cpu > 1:
        whoami = mpi_fork(num_cpu, binding)
        if whoami == 'parent':
            sys.exit(0)
        import baselines.common.tf_util as U
        U.single_threaded_session().__enter__()
    rank = MPI.COMM_WORLD.Get_rank()

    # Configure logging
    '''
    if logging: 
        logdir = 'logs/'+str(env_name)+'-prioritization'+str(prioritization)+'-replay_strategy'+str(replay_strategy)+\
                 '-n_epochs'+str(n_epochs)+'-num_cpu'+str(num_cpu)+'-seed'+str(seed)+'-version'+str(version)
    else:
        logdir = osp.join(tempfile.gettempdir(),
            datetime.datetime.now().strftime("openai-%Y-%m-%d-%H-%M-%S-%f"))
    '''
    # Configure logging
    if rank == 0:
        if logdir or logger.get_dir() is None:
            logger.configure(dir=logdir)
    else:
        logger.configure()
    logdir = logger.get_dir()
    assert logdir is not None
    os.makedirs(logdir, exist_ok=True)

    if rank == 0:
        if logdir or logger.get_dir() is None:
            logger.configure(dir=logdir)
    else:
        logger.configure()
    logdir = logger.get_dir()
    assert logdir is not None
    os.makedirs(logdir, exist_ok=True)

    # Seed everything.
    rank_seed = seed + 1000000 * rank
    set_global_seeds(rank_seed)

    # Prepare params.
    params = config.DEFAULT_PARAMS
    params['env_name'] = env_name
    params['replay_strategy'] = replay_strategy
    params['temperature'] = temperature
    params['prioritization'] = prioritization
    params['binding'] = binding
    params['max_timesteps'] = n_epochs * params['n_cycles'] * params[
        'n_batches'] * num_cpu
    params['version'] = version
    params['dump_buffer'] = dump_buffer
    params['n_cycles'] = n_cycles
    params['rank_method'] = rank_method
    params['fit_interval'] = fit_interval
    params['n_epochs'] = n_epochs
    params['num_cpu'] = num_cpu

    if params['dump_buffer']:
        params['alpha'] = 0

    if env_name in config.DEFAULT_ENV_PARAMS:
        params.update(config.DEFAULT_ENV_PARAMS[env_name]
                      )  # merge env-specific parameters in
    params.update(
        **override_params)  # makes it possible to override any parameter
    with open(os.path.join(logger.get_dir(), 'params.json'), 'w') as f:
        json.dump(params, f)
    params = config.prepare_params(params)
    config.log_params(params, logger=logger)

    dims = config.configure_dims(params)
    policy = config.configure_ddpg(dims=dims,
                                   params=params,
                                   clip_return=clip_return)

    rollout_params = {
        'exploit': False,
        'use_target_net': False,
        'use_demo_states': True,
        'compute_Q': False,
        'T': params['T'],
    }

    eval_params = {
        'exploit': True,
        'use_target_net': params['test_with_polyak'],
        'use_demo_states': False,
        'compute_Q': True,
        'T': params['T'],
    }

    for name in [
            'T', 'rollout_batch_size', 'gamma', 'noise_eps', 'random_eps'
    ]:
        rollout_params[name] = params[name]
        eval_params[name] = params[name]

    rollout_worker = RolloutWorker(params['make_env'], policy, dims, logger,
                                   **rollout_params)
    rollout_worker.seed(rank_seed)

    evaluator = RolloutWorker(params['make_env'], policy, dims, logger,
                              **eval_params)
    evaluator.seed(rank_seed)

    train(logdir=logdir,
          policy=policy,
          rollout_worker=rollout_worker,
          evaluator=evaluator,
          n_epochs=n_epochs,
          n_test_rollouts=params['n_test_rollouts'],
          n_cycles=params['n_cycles'],
          n_batches=params['n_batches'],
          policy_save_interval=policy_save_interval,
          save_policies=save_policies,
          num_cpu=num_cpu,
          dump_buffer=dump_buffer,
          rank_method=rank_method,
          fit_interval=fit_interval,
          prioritization=prioritization)