def test_rank_aic(self):
     global table
     
     ranked_table  = ac.rank_aic(table, aic_column_name='AIC Value', inplace=False)
     
     table = ranked_table
     
     assert len(table)
    for tax in trace_AX.values():
        tax.set_xticks(tax.get_xticks()[::2])
        tax.set_yticks(tax.get_yticks()[::2])
        tax.tick_params(axis='both', labelsize=16)
        tax.xaxis.label.set_size(fontsize=16)
        tax.yaxis.label.set_size(fontsize=16)

    plt.tight_layout(pad=1.0)  # set spacing between figures

    #Rank models
    table = ac.calculate_aic(data=sampler_args['data'],
                             models=sampler_args['models'],
                             priors=sampler_args['priors'],
                             params=accepted.iloc[-10:])

    ranked_table = ac.rank_aic(table, inplace=False)
    print('\nRanked AIC table:\n', ranked_table.head())

    #export the ranked table into csv file inside the output folder
    ranked_table.to_csv(output_folder / 'ranked_table.csv')

    best = ranked_table.iloc[0]
    best_row_index = best['row']
    best_model_num = best['model_num']

    new_settings = config_data[best_model_num]
    new_settings['settings_name'] = 'LogicGate_OR_bestfitted'
    new_settings['parameters'] = cf.get_params_for_model(
        models=sampler_args['models'],
        trace=accepted,
        model_num=best_model_num,
Beispiel #3
0
                       labels=labels,
                       titles=titles,
                       legend_args=legend_args,
                       figs=None,
                       AX=None)
    '''
    6. Model Ranking with AIC Calculation
    '''

    table = ac.calculate_aic(data=sampler_args['data'],
                             models=sampler_args['models'],
                             priors=sampler_args['priors'],
                             params=posterior)

    ranked_table = ac.rank_aic(table,
                               aic_column_name='AIC Value',
                               inplace=False)
    '''
    rank_aic accepts a DataFrame containing AIC values indexed under 
    aic_column_name. It then sorts the DataFrame and adds columns for the normalized
    AIC and the evidence for that model. The original columns in the input
    DataFrame remain untouched.
    
    rank_aic isn't picky about what indices and columns you use as long as your 
    DataFrame has its AIC values indexed under the argument aic_column_name.
    '''
    '''
    7. Saving the Results
    '''
    '''
    Saving the models and settings allows us to reuse them without having to