def compute_TEM4UU(gammaDD,betaU,alpha, smallb4U, smallbsquared,u4U,gammaUU=None):
    global TEM4UU

    # Then define g^{mu nu} in terms of the ADM quantities:
    if gammaUU is None:
        import BSSN.ADMBSSN_tofrom_4metric as AB4m
        AB4m.g4UU_ito_BSSN_or_ADM("ADM",gammaDD,betaU,alpha)
        # Finally compute T^{mu nu}
        TEM4UU = ixp.zerorank2(DIM=4)
        for mu in range(4):
            for nu in range(4):
                TEM4UU[mu][nu] = smallbsquared*u4U[mu]*u4U[nu] \
                                 + sp.Rational(1,2)*smallbsquared*AB4m.g4UU[mu][nu] \
                                 - smallb4U[mu]*smallb4U[nu]
    else:
        g4UU = ixp.zerorank4(DIM=4)
        g4UU[0][0] = -1 / alpha**2
        for mu in range(1,4):
            g4UU[0][mu] = g4UU[mu][0] = betaU[mu-1]/alpha**2
        for mu in range(1,4):
            for nu in range(1,4):
                g4UU[mu][nu] = gammaUU[mu-1][nu-1] - betaU[mu-1]*betaU[nu-1]/alpha**2
        # Finally compute T^{mu nu}
        TEM4UU = ixp.zerorank2(DIM=4)
        for mu in range(4):
            for nu in range(4):
                TEM4UU[mu][nu] = smallbsquared*u4U[mu]*u4U[nu] \
                                 + sp.Rational(1,2)*smallbsquared*g4UU[mu][nu] \
                                 - smallb4U[mu]*smallb4U[nu]
Beispiel #2
0
def ScalarField_Tmunu():

    global T4UU

    # Step 1.c: Set spatial dimension (must be 3 for BSSN, as BSSN is
    #           a 3+1-dimensional decomposition of the general
    #           relativistic field equations)
    DIM = 3

    # Step 1.d: Given the chosen coordinate system, set up
    #           corresponding reference metric and needed
    #           reference metric quantities
    #    The following function call sets up the reference metric
    #    and related quantities, including rescaling matrices ReDD,
    #    ReU, and hatted quantities.
    rfm.reference_metric()

    # Step 1.e: Import all basic (unrescaled) BSSN scalars & tensors
    Bq.BSSN_basic_tensors()
    alpha = Bq.alpha
    betaU = Bq.betaU

    # Step 1.g: Define ADM quantities in terms of BSSN quantities
    BtoA.ADM_in_terms_of_BSSN()
    gammaDD = BtoA.gammaDD
    gammaUU = BtoA.gammaUU

    # Step 1.h: Define scalar field quantitites
    sf_dD = ixp.declarerank1("sf_dD")
    Pi = sp.Symbol("sfM", real=True)

    # Step 2a: Set up \partial^{t}\varphi = Pi/alpha
    sf4dU = ixp.zerorank1(DIM=4)
    sf4dU[0] = Pi / alpha

    # Step 2b: Set up \partial^{i}\varphi = -Pi*beta^{i}/alpha + gamma^{ij}\partial_{j}\varphi
    for i in range(DIM):
        sf4dU[i + 1] = -Pi * betaU[i] / alpha
        for j in range(DIM):
            sf4dU[i + 1] += gammaUU[i][j] * sf_dD[j]

    # Step 2c: Set up \partial^{i}\varphi\partial_{i}\varphi = -Pi**2 + gamma^{ij}\partial_{i}\varphi\partial_{j}\varphi
    sf4d2 = -Pi**2
    for i in range(DIM):
        for j in range(DIM):
            sf4d2 += gammaUU[i][j] * sf_dD[i] * sf_dD[j]

    # Step 3a: Setting up g^{\mu\nu}
    ADMg.g4UU_ito_BSSN_or_ADM("ADM",
                              gammaDD=gammaDD,
                              betaU=betaU,
                              alpha=alpha,
                              gammaUU=gammaUU)
    g4UU = ADMg.g4UU

    # Step 3b: Setting up T^{\mu\nu} for a massless scalar field
    T4UU = ixp.zerorank2(DIM=4)
    for mu in range(4):
        for nu in range(4):
            T4UU[mu][nu] = sf4dU[mu] * sf4dU[nu] - g4UU[mu][nu] * sf4d2 / 2
Beispiel #3
0
def compute_smallbsquared(gammaDD, betaU, alpha, smallb4U):
    global smallbsquared
    import BSSN.ADMBSSN_tofrom_4metric as AB4m
    AB4m.g4DD_ito_BSSN_or_ADM("ADM", gammaDD, betaU, alpha)

    smallbsquared = sp.sympify(0)
    for mu in range(4):
        for nu in range(4):
            smallbsquared += AB4m.g4DD[mu][nu] * smallb4U[mu] * smallb4U[nu]
Beispiel #4
0
def compute_TEM4UD(gammaDD, betaU, alpha, TEM4UU):
    global TEM4UD
    # Next compute T^mu_nu = T^{mu delta} g_{delta nu}, needed for S_tilde flux.
    # First we'll need g_{alpha nu} in terms of ADM quantities:
    import BSSN.ADMBSSN_tofrom_4metric as AB4m
    AB4m.g4DD_ito_BSSN_or_ADM("ADM", gammaDD, betaU, alpha)
    TEM4UD = ixp.zerorank2(DIM=4)
    for mu in range(4):
        for nu in range(4):
            for delta in range(4):
                TEM4UD[mu][nu] += TEM4UU[mu][delta] * AB4m.g4DD[delta][nu]
Beispiel #5
0
def compute_T4UU(gammaDD,betaU,alpha, rho_b,P,epsilon,u4U):
    global T4UU

    compute_enthalpy(rho_b,P,epsilon)
    # Then define g^{mu nu} in terms of the ADM quantities:
    import BSSN.ADMBSSN_tofrom_4metric as AB4m
    AB4m.g4UU_ito_BSSN_or_ADM("ADM",gammaDD,betaU,alpha)

    # Finally compute T^{mu nu}
    T4UU = ixp.zerorank2(DIM=4)
    for mu in range(4):
        for nu in range(4):
            T4UU[mu][nu] = rho_b * h * u4U[mu]*u4U[nu] + P*AB4m.g4UU[mu][nu]
Beispiel #6
0
def compute_TEM4UU(gammaDD, betaU, alpha, smallb4U, smallbsquared, u4U):
    global TEM4UU

    # Then define g^{mu nu} in terms of the ADM quantities:
    import BSSN.ADMBSSN_tofrom_4metric as AB4m
    AB4m.g4UU_ito_BSSN_or_ADM("ADM", gammaDD, betaU, alpha)
    # Finally compute T^{mu nu}
    TEM4UU = ixp.zerorank2(DIM=4)
    for mu in range(4):
        for nu in range(4):
            TEM4UU[mu][nu] = smallbsquared*u4U[mu]*u4U[nu] \
                             + sp.Rational(1,2)*smallbsquared*AB4m.g4UU[mu][nu] \
                             - smallb4U[mu]*smallb4U[nu]
def compute_smallb4U_with_driftvU_for_FFE(gammaDD,betaU,alpha, u4U,B_notildeU, sqrt4pi):
    global smallb4_with_driftv_for_FFE_U
    import BSSN.ADMBSSN_tofrom_4metric as AB4m
    AB4m.g4DD_ito_BSSN_or_ADM("ADM",gammaDD,betaU,alpha)

    u4D = ixp.zerorank1(DIM=4)
    for mu in range(4):
        for nu in range(4):
            u4D[mu] += AB4m.g4DD[mu][nu]*u4U[nu]
    smallb4_with_driftv_for_FFE_U = ixp.zerorank1(DIM=4)

    # b^0 = 0
    smallb4_with_driftv_for_FFE_U[0] = 0
    # b^i = B^i / [alpha * u^0 * sqrt(4 pi)]
    for i in range(3):
        smallb4_with_driftv_for_FFE_U[i+1] = B_notildeU[i] / (alpha*u4U[0]*sqrt4pi)
Beispiel #8
0
def compute_smallb4U(gammaDD, betaU, alpha, u4U, B_notildeU, sqrt4pi):
    global smallb4U
    import BSSN.ADMBSSN_tofrom_4metric as AB4m
    AB4m.g4DD_ito_BSSN_or_ADM("ADM", gammaDD, betaU, alpha)

    u4D = ixp.zerorank1(DIM=4)
    for mu in range(4):
        for nu in range(4):
            u4D[mu] += AB4m.g4DD[mu][nu] * u4U[nu]
    smallb4U = ixp.zerorank1(DIM=4)
    u4_dot_B_notilde = sp.sympify(0)
    for i in range(3):
        u4_dot_B_notilde += u4D[i + 1] * B_notildeU[i]

    # b^0 = (u_j B^j)/[alpha * sqrt(4 pi)]
    smallb4U[0] = u4_dot_B_notilde / (alpha * sqrt4pi)
    # b^i = [B^i + (u_j B^j)]/[alpha * u^0 * sqrt(4 pi)]
    for i in range(3):
        smallb4U[i + 1] = (B_notildeU[i] + u4_dot_B_notilde * u4U[i + 1]) / (alpha * u4U[0] * sqrt4pi)
Beispiel #9
0
def driver_C_codes(Csrcdict,
                   ThornName,
                   rhs_list,
                   evol_gfs_list,
                   aux_gfs_list,
                   auxevol_gfs_list,
                   LapseCondition="OnePlusLog",
                   enable_stress_energy_source_terms=False):
    # First the ETK banner code, proudly showing the NRPy+ banner
    import NRPy_logo as logo
    outstr = """
#include <stdio.h>

void BaikalETK_Banner() 
{
    """
    logostr = logo.print_logo(print_to_stdout=False)
    outstr += "printf(\"BaikalETK: another Einstein Toolkit thorn generated by\\n\");\n"
    for line in logostr.splitlines():
        outstr += "    printf(\"" + line + "\\n\");\n"
    outstr += "}\n"

    # Finally add C code string to dictionaries (Python dictionaries are immutable)
    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list("Banner.c")] = outstr.replace(
        "BaikalETK", ThornName)

    # Then the RegisterSlicing() function, needed for other ETK thorns
    outstr = """
#include "cctk.h"

#include "Slicing.h"

int BaikalETK_RegisterSlicing (void)
{
  Einstein_RegisterSlicing ("BaikalETK");
  return 0;
}"""

    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list(
        "RegisterSlicing.c")] = outstr.replace("BaikalETK", ThornName)

    # Next BaikalETK_Symmetry_registration(): Register symmetries

    full_gfs_list = []
    full_gfs_list.extend(evol_gfs_list)
    full_gfs_list.extend(auxevol_gfs_list)
    full_gfs_list.extend(aux_gfs_list)

    outstr = """
#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"
#include "Symmetry.h"

void BaikalETK_Symmetry_registration(CCTK_ARGUMENTS)
{
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;

  // Stores gridfunction parity across x=0, y=0, and z=0 planes, respectively
  int sym[3];

  // Next register parities for each gridfunction based on its name 
  //    (to ensure this algorithm is robust, gridfunctions with integers
  //     in their base names are forbidden in NRPy+).
"""
    outstr += ""
    for gf in full_gfs_list:
        # Do not add T4UU gridfunctions if enable_stress_energy_source_terms==False:
        if not (enable_stress_energy_source_terms == False and "T4UU" in gf):
            outstr += """
  // Default to scalar symmetry:
  sym[0] = 1; sym[1] = 1; sym[2] = 1;
  // Now modify sym[0], sym[1], and/or sym[2] as needed 
  //    to account for gridfunction parity across 
  //    x=0, y=0, and/or z=0 planes, respectively
"""
            # If gridfunction name does not end in a digit, by NRPy+ syntax, it must be a scalar
            if gf[len(gf) - 1].isdigit() == False:
                pass  # Scalar = default
            elif len(gf) > 2:
                # Rank-1 indexed expression (e.g., vector)
                if gf[len(gf) - 2].isdigit() == False:
                    if int(gf[-1]) > 2:
                        print("Error: Found invalid gridfunction name: " + gf)
                        sys.exit(1)
                    symidx = gf[-1]
                    outstr += "  sym[" + symidx + "] = -1;\n"
                # Rank-2 indexed expression
                elif gf[len(gf) - 2].isdigit() == True:
                    if len(gf) > 3 and gf[len(gf) - 3].isdigit() == True:
                        print("Error: Found a Rank-3 or above gridfunction: " +
                              gf + ", which is at the moment unsupported.")
                        print("It should be easy to support this if desired.")
                        sys.exit(1)
                    symidx0 = gf[-2]
                    outstr += "  sym[" + symidx0 + "] *= -1;\n"
                    symidx1 = gf[-1]
                    outstr += "  sym[" + symidx1 + "] *= -1;\n"
            else:
                print(
                    "Don't know how you got this far with a gridfunction named "
                    + gf + ", but I'll take no more of this nonsense.")
                print(
                    "   Please follow best-practices and rename your gridfunction to be more descriptive"
                )
                sys.exit(1)
            outstr += "  SetCartSymVN(cctkGH, sym, \"BaikalETK::" + gf + "\");\n"
    outstr += "}\n"

    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list("Symmetry_registration_oldCartGrid3D.c")] = \
        outstr.replace("BaikalETK",ThornName)

    # Next set RHSs to zero
    outstr = """
#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"
#include "Symmetry.h"

void BaikalETK_zero_rhss(CCTK_ARGUMENTS)
{
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;
"""
    set_rhss_to_zero = ""
    for gf in rhs_list:
        set_rhss_to_zero += gf + "[CCTK_GFINDEX3D(cctkGH,i0,i1,i2)] = 0.0;\n"

    outstr += lp.loop(["i2", "i1", "i0"], ["0", "0", "0"],
                      ["cctk_lsh[2]", "cctk_lsh[1]", "cctk_lsh[0]"],
                      ["1", "1", "1"], [
                          "#pragma omp parallel for",
                          "",
                          "",
                      ], "", set_rhss_to_zero)
    outstr += "}\n"
    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list("zero_rhss.c")] = outstr.replace(
        "BaikalETK", ThornName)

    # Next registration with the Method of Lines thorn
    outstr = """
//--------------------------------------------------------------------------
// Register with the Method of Lines time stepper
// (MoL thorn, found in arrangements/CactusBase/MoL)
// MoL documentation located in arrangements/CactusBase/MoL/doc
//--------------------------------------------------------------------------
#include <stdio.h>

#include "cctk.h"
#include "cctk_Parameters.h"
#include "cctk_Arguments.h"

#include "Symmetry.h"

void BaikalETK_MoL_registration(CCTK_ARGUMENTS)
{
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;
  
  CCTK_INT ierr = 0, group, rhs;

  // Register evolution & RHS gridfunction groups with MoL, so it knows

  group = CCTK_GroupIndex("BaikalETK::evol_variables");
  rhs = CCTK_GroupIndex("BaikalETK::evol_variables_rhs");
  ierr += MoLRegisterEvolvedGroup(group, rhs);
  
  if (ierr) CCTK_ERROR("Problems registering with MoL");
}
"""
    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list(
        "MoL_registration.c")] = outstr.replace("BaikalETK", ThornName)

    # Next register with the boundary conditions thorns.
    # PART 1: Set BC type to "none" for all variables
    # Since we choose NewRad boundary conditions, we must register all
    #   gridfunctions to have boundary type "none". This is because
    #   NewRad is seen by the rest of the Toolkit as a modification to the
    #   RHSs.

    # This code is based on Kranc's McLachlan/ML_BSSN/src/Boundaries.cc code.
    outstr = """
#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"
#include "cctk_Faces.h"
#include "util_Table.h"
#include "Symmetry.h"

// Set `none` boundary conditions on BSSN RHSs, as these are set via NewRad.
void BaikalETK_BoundaryConditions_evolved_gfs(CCTK_ARGUMENTS)
{
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;
  
  CCTK_INT ierr CCTK_ATTRIBUTE_UNUSED = 0;
"""
    for gf in evol_gfs_list:
        outstr += """
  ierr = Boundary_SelectVarForBC(cctkGH, CCTK_ALL_FACES, 1, -1, "BaikalETK::""" + gf + """", "none");
  if (ierr < 0) CCTK_ERROR("Failed to register BC for BaikalETK::""" + gf + """!");
"""
    outstr += """
}

// Set `flat` boundary conditions on BSSN constraints, similar to what Lean does.
void BaikalETK_BoundaryConditions_aux_gfs(CCTK_ARGUMENTS) {
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;
  
  CCTK_INT ierr CCTK_ATTRIBUTE_UNUSED = 0;

"""
    for gf in aux_gfs_list:
        outstr += """
  ierr = Boundary_SelectVarForBC(cctkGH, CCTK_ALL_FACES, cctk_nghostzones[0], -1, "BaikalETK::""" + gf + """", "flat");
  if (ierr < 0) CCTK_ERROR("Failed to register BC for BaikalETK::""" + gf + """!");
"""
    outstr += "}\n"

    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list(
        "BoundaryConditions.c")] = outstr.replace("BaikalETK", ThornName)

    # PART 2: Set C code for calling NewRad BCs
    #   As explained in lean_public/LeanBSSNMoL/src/calc_bssn_rhs.F90,
    #   the function NewRad_Apply takes the following arguments:
    #   NewRad_Apply(cctkGH, var, rhs, var0, v0, radpower),
    #     which implement the boundary condition:
    #       var  =  var_at_infinite_r + u(r-var_char_speed*t)/r^var_radpower
    #  Obviously for var_radpower>0, var_at_infinite_r is the value of
    #    the variable at r->infinity. var_char_speed is the propagation
    #    speed at the outer boundary, and var_radpower is the radial
    #    falloff rate.

    outstr = """
#include <math.h>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

void BaikalETK_NewRad(CCTK_ARGUMENTS) {
  DECLARE_CCTK_ARGUMENTS;
  DECLARE_CCTK_PARAMETERS;
  
"""
    for gf in evol_gfs_list:
        var_at_infinite_r = "0.0"
        var_char_speed = "1.0"
        var_radpower = "1.0"

        if gf == "alpha":
            var_at_infinite_r = "1.0"
            if LapseCondition == "OnePlusLog":
                var_char_speed = "sqrt(2.0)"
            else:
                pass  # 1.0 (default) is fine
        if "aDD" in gf or "trK" in gf:  # consistent with Lean code.
            var_radpower = "2.0"

        outstr += "  NewRad_Apply(cctkGH, " + gf + ", " + gf.replace(
            "GF", ""
        ) + "_rhsGF, " + var_at_infinite_r + ", " + var_char_speed + ", " + var_radpower + ");\n"
    outstr += "}\n"

    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list(
        "BoundaryCondition_NewRad.c")] = outstr.replace(
            "BaikalETK", ThornName)

    # First we convert from ADM to BSSN, as is required to convert initial data
    #    (given using) ADM quantities, to the BSSN evolved variables
    import BSSN.ADM_Numerical_Spherical_or_Cartesian_to_BSSNCurvilinear as atob
    IDhDD,IDaDD,IDtrK,IDvetU,IDbetU,IDalpha,IDcf,IDlambdaU = \
        atob.Convert_Spherical_or_Cartesian_ADM_to_BSSN_curvilinear("Cartesian","DoNotOutputADMInputFunction",os.path.join(ThornName,"src"))

    # Store the original list of registered gridfunctions; we'll want to unregister
    #   all the *SphorCart* gridfunctions after we're finished with them below.
    orig_glb_gridfcs_list = []
    for gf in gri.glb_gridfcs_list:
        orig_glb_gridfcs_list.append(gf)

    alphaSphorCart = gri.register_gridfunctions("AUXEVOL", "alphaSphorCart")
    betaSphorCartU = ixp.register_gridfunctions_for_single_rank1(
        "AUXEVOL", "betaSphorCartU")
    BSphorCartU = ixp.register_gridfunctions_for_single_rank1(
        "AUXEVOL", "BSphorCartU")
    gammaSphorCartDD = ixp.register_gridfunctions_for_single_rank2(
        "AUXEVOL", "gammaSphorCartDD", "sym01")
    KSphorCartDD = ixp.register_gridfunctions_for_single_rank2(
        "AUXEVOL", "KSphorCartDD", "sym01")

    # ADM to BSSN conversion, used for converting ADM initial data into a form readable by this thorn.
    # ADM to BSSN, Part 1: Set up function call and pointers to ADM gridfunctions
    outstr = """
#include <math.h>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

void BaikalETK_ADM_to_BSSN(CCTK_ARGUMENTS) {
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;
    
    CCTK_REAL *alphaSphorCartGF = alp;
"""
    # It's ugly if we output code in the following ordering, so we'll first
    #   output to a string and then sort the string to beautify the code a bit.
    outstrtmp = []
    for i in range(3):
        outstrtmp.append("    CCTK_REAL *betaSphorCartU" + str(i) +
                         "GF = beta" + chr(ord('x') + i) + ";\n")
        outstrtmp.append("    CCTK_REAL *BSphorCartU" + str(i) +
                         "GF = dtbeta" + chr(ord('x') + i) + ";\n")
        for j in range(i, 3):
            outstrtmp.append("    CCTK_REAL *gammaSphorCartDD" + str(i) +
                             str(j) + "GF = g" + chr(ord('x') + i) +
                             chr(ord('x') + j) + ";\n")
            outstrtmp.append("    CCTK_REAL *KSphorCartDD" + str(i) + str(j) +
                             "GF = k" + chr(ord('x') + i) + chr(ord('x') + j) +
                             ";\n")
    outstrtmp.sort()
    for line in outstrtmp:
        outstr += line

    # ADM to BSSN, Part 2: Set up ADM to BSSN conversions for BSSN gridfunctions that do not require
    #                      finite-difference derivatives (i.e., all gridfunctions except lambda^i (=Gamma^i
    #                      in non-covariant BSSN)):
    #                      h_{ij}, a_{ij}, trK, vet^i=beta^i,bet^i=B^i, cf (conformal factor), and alpha
    all_but_lambdaU_expressions = [
        lhrh(lhs=gri.gfaccess("in_gfs", "hDD00"), rhs=IDhDD[0][0]),
        lhrh(lhs=gri.gfaccess("in_gfs", "hDD01"), rhs=IDhDD[0][1]),
        lhrh(lhs=gri.gfaccess("in_gfs", "hDD02"), rhs=IDhDD[0][2]),
        lhrh(lhs=gri.gfaccess("in_gfs", "hDD11"), rhs=IDhDD[1][1]),
        lhrh(lhs=gri.gfaccess("in_gfs", "hDD12"), rhs=IDhDD[1][2]),
        lhrh(lhs=gri.gfaccess("in_gfs", "hDD22"), rhs=IDhDD[2][2]),
        lhrh(lhs=gri.gfaccess("in_gfs", "aDD00"), rhs=IDaDD[0][0]),
        lhrh(lhs=gri.gfaccess("in_gfs", "aDD01"), rhs=IDaDD[0][1]),
        lhrh(lhs=gri.gfaccess("in_gfs", "aDD02"), rhs=IDaDD[0][2]),
        lhrh(lhs=gri.gfaccess("in_gfs", "aDD11"), rhs=IDaDD[1][1]),
        lhrh(lhs=gri.gfaccess("in_gfs", "aDD12"), rhs=IDaDD[1][2]),
        lhrh(lhs=gri.gfaccess("in_gfs", "aDD22"), rhs=IDaDD[2][2]),
        lhrh(lhs=gri.gfaccess("in_gfs", "trK"), rhs=IDtrK),
        lhrh(lhs=gri.gfaccess("in_gfs", "vetU0"), rhs=IDvetU[0]),
        lhrh(lhs=gri.gfaccess("in_gfs", "vetU1"), rhs=IDvetU[1]),
        lhrh(lhs=gri.gfaccess("in_gfs", "vetU2"), rhs=IDvetU[2]),
        lhrh(lhs=gri.gfaccess("in_gfs", "betU0"), rhs=IDbetU[0]),
        lhrh(lhs=gri.gfaccess("in_gfs", "betU1"), rhs=IDbetU[1]),
        lhrh(lhs=gri.gfaccess("in_gfs", "betU2"), rhs=IDbetU[2]),
        lhrh(lhs=gri.gfaccess("in_gfs", "alpha"), rhs=IDalpha),
        lhrh(lhs=gri.gfaccess("in_gfs", "cf"), rhs=IDcf)
    ]

    outCparams = "preindent=1,outCfileaccess=a,outCverbose=False,includebraces=False"
    all_but_lambdaU_outC = fin.FD_outputC("returnstring",
                                          all_but_lambdaU_expressions,
                                          outCparams)
    outstr += lp.loop(["i2", "i1", "i0"], ["0", "0", "0"],
                      ["cctk_lsh[2]", "cctk_lsh[1]", "cctk_lsh[0]"],
                      ["1", "1", "1"], ["#pragma omp parallel for", "", ""],
                      "    ", all_but_lambdaU_outC)

    # ADM to BSSN, Part 3: Set up ADM to BSSN conversions for BSSN gridfunctions defined from
    #                      finite-difference derivatives: lambda^i, which is Gamma^i in non-covariant BSSN):
    outstr += """
    const CCTK_REAL invdx0 = 1.0/CCTK_DELTA_SPACE(0);
    const CCTK_REAL invdx1 = 1.0/CCTK_DELTA_SPACE(1);
    const CCTK_REAL invdx2 = 1.0/CCTK_DELTA_SPACE(2);
"""

    path = os.path.join(ThornName, "src")
    BSSN_RHS_FD_orders_output = []
    for root, dirs, files in os.walk(path):
        for file in files:
            if "BSSN_RHSs_FD_order" in file:
                array = file.replace(".", "_").split("_")
                BSSN_RHS_FD_orders_output.append(int(array[4]))

    for current_FD_order in BSSN_RHS_FD_orders_output:
        # Store original finite-differencing order:
        orig_FD_order = par.parval_from_str(
            "finite_difference::FD_CENTDERIVS_ORDER")
        # Set new finite-differencing order:
        par.set_parval_from_str("finite_difference::FD_CENTDERIVS_ORDER",
                                current_FD_order)

        outCparams = "preindent=1,outCfileaccess=a,outCverbose=False,includebraces=False"
        lambdaU_expressions = [
            lhrh(lhs=gri.gfaccess("in_gfs", "lambdaU0"), rhs=IDlambdaU[0]),
            lhrh(lhs=gri.gfaccess("in_gfs", "lambdaU1"), rhs=IDlambdaU[1]),
            lhrh(lhs=gri.gfaccess("in_gfs", "lambdaU2"), rhs=IDlambdaU[2])
        ]
        lambdaU_expressions_FDout = fin.FD_outputC("returnstring",
                                                   lambdaU_expressions,
                                                   outCparams)

        lambdafile = "ADM_to_BSSN__compute_lambdaU_FD_order_" + str(
            current_FD_order) + ".h"
        with open(os.path.join(ThornName, "src", lambdafile), "w") as file:
            file.write(
                lp.loop(["i2", "i1", "i0"], [
                    "cctk_nghostzones[2]", "cctk_nghostzones[1]",
                    "cctk_nghostzones[0]"
                ], [
                    "cctk_lsh[2]-cctk_nghostzones[2]",
                    "cctk_lsh[1]-cctk_nghostzones[1]",
                    "cctk_lsh[0]-cctk_nghostzones[0]"
                ], ["1", "1", "1"], ["#pragma omp parallel for", "", ""], "",
                        lambdaU_expressions_FDout))

        outstr += "    if(FD_order == " + str(current_FD_order) + ") {\n"
        outstr += "        #include \"" + lambdafile + "\"\n"
        outstr += "    }\n"
        # Restore original FD order
        par.set_parval_from_str("finite_difference::FD_CENTDERIVS_ORDER",
                                orig_FD_order)

    outstr += """
    ExtrapolateGammas(cctkGH,lambdaU0GF);
    ExtrapolateGammas(cctkGH,lambdaU1GF);
    ExtrapolateGammas(cctkGH,lambdaU2GF);
}
"""

    # Unregister the *SphorCartGF's.
    gri.glb_gridfcs_list = orig_glb_gridfcs_list

    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list("ADM_to_BSSN.c")] = outstr.replace(
        "BaikalETK", ThornName)

    import BSSN.ADM_in_terms_of_BSSN as btoa
    import BSSN.BSSN_quantities as Bq

    btoa.ADM_in_terms_of_BSSN()
    Bq.BSSN_basic_tensors()  # Gives us betaU & BU

    outstr = """
#include <math.h>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

void BaikalETK_BSSN_to_ADM(CCTK_ARGUMENTS) {
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

"""
    btoa_lhrh = []
    for i in range(3):
        for j in range(i, 3):
            btoa_lhrh.append(
                lhrh(lhs="g" + chr(ord('x') + i) + chr(ord('x') + j) +
                     "[CCTK_GFINDEX3D(cctkGH,i0,i1,i2)]",
                     rhs=btoa.gammaDD[i][j]))
    for i in range(3):
        for j in range(i, 3):
            btoa_lhrh.append(
                lhrh(lhs="k" + chr(ord('x') + i) + chr(ord('x') + j) +
                     "[CCTK_GFINDEX3D(cctkGH,i0,i1,i2)]",
                     rhs=btoa.KDD[i][j]))
    btoa_lhrh.append(
        lhrh(lhs="alp[CCTK_GFINDEX3D(cctkGH,i0,i1,i2)]", rhs=Bq.alpha))

    for i in range(3):
        btoa_lhrh.append(
            lhrh(lhs="beta" + chr(ord('x') + i) +
                 "[CCTK_GFINDEX3D(cctkGH,i0,i1,i2)]",
                 rhs=Bq.betaU[i]))

    for i in range(3):
        btoa_lhrh.append(
            lhrh(lhs="dtbeta" + chr(ord('x') + i) +
                 "[CCTK_GFINDEX3D(cctkGH,i0,i1,i2)]",
                 rhs=Bq.BU[i]))

    outCparams = "preindent=1,outCfileaccess=a,outCverbose=False,includebraces=False"
    bssn_to_adm_Ccode = fin.FD_outputC("returnstring", btoa_lhrh, outCparams)
    outstr += lp.loop(["i2", "i1", "i0"], ["0", "0", "0"],
                      ["cctk_lsh[2]", "cctk_lsh[1]", "cctk_lsh[0]"],
                      ["1", "1", "1"], ["#pragma omp parallel for", "", ""],
                      "", bssn_to_adm_Ccode)

    outstr += "}\n"

    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list("BSSN_to_ADM.c")] = outstr.replace(
        "BaikalETK", ThornName)

    # Next, the driver for computing the Ricci tensor:
    outstr = """
#include <math.h>

#include "SIMD/SIMD_intrinsics.h"

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

void BaikalETK_driver_pt1_BSSN_Ricci(CCTK_ARGUMENTS) {
    DECLARE_CCTK_ARGUMENTS;

    const CCTK_INT *FD_order = CCTK_ParameterGet("FD_order","BaikalETK",NULL);

    const CCTK_REAL NOSIMDinvdx0 = 1.0/CCTK_DELTA_SPACE(0);
    const REAL_SIMD_ARRAY invdx0 = ConstSIMD(NOSIMDinvdx0);
    const CCTK_REAL NOSIMDinvdx1 = 1.0/CCTK_DELTA_SPACE(1);
    const REAL_SIMD_ARRAY invdx1 = ConstSIMD(NOSIMDinvdx1);
    const CCTK_REAL NOSIMDinvdx2 = 1.0/CCTK_DELTA_SPACE(2);
    const REAL_SIMD_ARRAY invdx2 = ConstSIMD(NOSIMDinvdx2);
"""
    path = os.path.join(ThornName, "src")

    for root, dirs, files in os.walk(path):
        for file in files:
            if "BSSN_Ricci_FD_order" in file:
                array = file.replace(".", "_").split("_")
                outstr += "    if(*FD_order == " + str(array[4]) + ") {\n"
                outstr += "        #include \"" + file + "\"\n"
                outstr += "    }\n"
    outstr += "}\n"

    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list(
        "driver_pt1_BSSN_Ricci.c")] = outstr.replace("BaikalETK", ThornName)

    def SIMD_declare_C_params():
        SIMD_declare_C_params_str = ""
        for i in range(len(par.glb_Cparams_list)):
            # keep_param is a boolean indicating whether we should accept or reject
            #    the parameter. singleparstring will contain the string indicating
            #    the variable type.
            keep_param, singleparstring = ccl.keep_param__return_type(
                par.glb_Cparams_list[i])

            if (keep_param) and ("CCTK_REAL" in singleparstring):
                parname = par.glb_Cparams_list[i].parname
                SIMD_declare_C_params_str += "    const "+singleparstring + "*NOSIMD"+parname+\
                                             " = CCTK_ParameterGet(\""+parname+"\",\"BaikalETK\",NULL);\n"
                SIMD_declare_C_params_str += "    const REAL_SIMD_ARRAY " + parname + " = ConstSIMD(*NOSIMD" + parname + ");\n"
        return SIMD_declare_C_params_str

    # Next, the driver for computing the BSSN RHSs:
    outstr = """
#include <math.h>

#include "SIMD/SIMD_intrinsics.h"

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

void BaikalETK_driver_pt2_BSSN_RHSs(CCTK_ARGUMENTS) {
    DECLARE_CCTK_ARGUMENTS;

    const CCTK_INT *FD_order = CCTK_ParameterGet("FD_order","BaikalETK",NULL);

    const CCTK_REAL NOSIMDinvdx0 = 1.0/CCTK_DELTA_SPACE(0);
    const REAL_SIMD_ARRAY invdx0 = ConstSIMD(NOSIMDinvdx0);
    const CCTK_REAL NOSIMDinvdx1 = 1.0/CCTK_DELTA_SPACE(1);
    const REAL_SIMD_ARRAY invdx1 = ConstSIMD(NOSIMDinvdx1);
    const CCTK_REAL NOSIMDinvdx2 = 1.0/CCTK_DELTA_SPACE(2);
    const REAL_SIMD_ARRAY invdx2 = ConstSIMD(NOSIMDinvdx2);
""" + SIMD_declare_C_params()

    path = os.path.join(ThornName, "src")

    for root, dirs, files in os.walk(path):
        for file in files:
            if "BSSN_RHSs_FD_order" in file:
                array = file.replace(".", "_").split("_")
                outstr += "    if(*FD_order == " + str(array[4]) + ") {\n"
                outstr += "        #include \"" + file + "\"\n"
                outstr += "    }\n"
    outstr += "}\n"

    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list(
        "driver_pt2_BSSN_RHSs.c")] = outstr.replace("BaikalETK", ThornName)

    # Next, the driver for enforcing detgammabar = detgammahat constraint:
    outstr = """
#include <math.h>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

void BaikalETK_enforce_detgammabar_constraint(CCTK_ARGUMENTS) {
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;
"""

    path = os.path.join(ThornName, "src")

    for root, dirs, files in os.walk(path):
        for file in files:
            if "enforcedetgammabar_constraint_FD_order" in file:
                array = file.replace(".", "_").split("_")
                outstr += "    if(FD_order == " + str(array[4]) + ") {\n"
                outstr += "        #include \"" + file + "\"\n"
                outstr += "    }\n"
    outstr += "}\n"

    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list("driver_enforcedetgammabar_constraint.c")] = \
        outstr.replace("BaikalETK",ThornName)

    # Next, the driver for computing the BSSN Hamiltonian & momentum constraints
    outstr = """
#include <math.h>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

void BaikalETK_BSSN_constraints(CCTK_ARGUMENTS) {
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    const CCTK_REAL invdx0 = 1.0/CCTK_DELTA_SPACE(0);
    const CCTK_REAL invdx1 = 1.0/CCTK_DELTA_SPACE(1);
    const CCTK_REAL invdx2 = 1.0/CCTK_DELTA_SPACE(2);
"""
    path = os.path.join(ThornName, "src")

    for root, dirs, files in os.walk(path):
        for file in files:
            if "BSSN_constraints_FD_order" in file:
                array = file.replace(".", "_").split("_")
                outstr += "    if(FD_order == " + str(array[4]) + ") {\n"
                outstr += "        #include \"" + file + "\"\n"
                outstr += "    }\n"
    outstr += "}\n"

    # Add C code string to dictionary (Python dictionaries are immutable)
    Csrcdict[append_to_make_code_defn_list(
        "driver_BSSN_constraints.c")] = outstr.replace("BaikalETK", ThornName)

    if enable_stress_energy_source_terms == True:
        # Declare T4DD as a set of gridfunctions. These won't
        #    actually appear in interface.ccl, as interface.ccl
        #    was set above. Thus before calling the code output
        #    by FD_outputC(), we'll have to set pointers
        #    to the actual gridfunctions they reference.
        #    (In this case the eTab's.)
        T4DD = ixp.register_gridfunctions_for_single_rank2("AUXEVOL",
                                                           "T4DD",
                                                           "sym01",
                                                           DIM=4)
        import BSSN.ADMBSSN_tofrom_4metric as AB4m
        AB4m.g4UU_ito_BSSN_or_ADM("BSSN")

        T4UUraised = ixp.zerorank2(DIM=4)
        for mu in range(4):
            for nu in range(4):
                for delta in range(4):
                    for gamma in range(4):
                        T4UUraised[mu][nu] += AB4m.g4UU[mu][delta] * AB4m.g4UU[
                            nu][gamma] * T4DD[delta][gamma]

        T4UU_expressions = [
            lhrh(lhs=gri.gfaccess("in_gfs", "T4UU00"), rhs=T4UUraised[0][0]),
            lhrh(lhs=gri.gfaccess("in_gfs", "T4UU01"), rhs=T4UUraised[0][1]),
            lhrh(lhs=gri.gfaccess("in_gfs", "T4UU02"), rhs=T4UUraised[0][2]),
            lhrh(lhs=gri.gfaccess("in_gfs", "T4UU03"), rhs=T4UUraised[0][3]),
            lhrh(lhs=gri.gfaccess("in_gfs", "T4UU11"), rhs=T4UUraised[1][1]),
            lhrh(lhs=gri.gfaccess("in_gfs", "T4UU12"), rhs=T4UUraised[1][2]),
            lhrh(lhs=gri.gfaccess("in_gfs", "T4UU13"), rhs=T4UUraised[1][3]),
            lhrh(lhs=gri.gfaccess("in_gfs", "T4UU22"), rhs=T4UUraised[2][2]),
            lhrh(lhs=gri.gfaccess("in_gfs", "T4UU23"), rhs=T4UUraised[2][3]),
            lhrh(lhs=gri.gfaccess("in_gfs", "T4UU33"), rhs=T4UUraised[3][3])
        ]

        outCparams = "outCverbose=False,includebraces=False,preindent=2,SIMD_enable=True"
        T4UUstr = fin.FD_outputC("returnstring", T4UU_expressions, outCparams)
        T4UUstr_loop = lp.loop(["i2", "i1", "i0"], ["0", "0", "0"],
                               ["cctk_lsh[2]", "cctk_lsh[1]", "cctk_lsh[0]"],
                               ["1", "1", "SIMD_width"],
                               ["#pragma omp parallel for", "", ""], "",
                               T4UUstr)

        outstr = """
#include <math.h>

#include "cctk.h"
#include "cctk_Arguments.h"
#include "cctk_Parameters.h"

#include "SIMD/SIMD_intrinsics.h"

void BaikalETK_driver_BSSN_T4UU(CCTK_ARGUMENTS) {
    DECLARE_CCTK_ARGUMENTS;
    DECLARE_CCTK_PARAMETERS;

    const CCTK_REAL *restrict T4DD00GF = eTtt;
    const CCTK_REAL *restrict T4DD01GF = eTtx;
    const CCTK_REAL *restrict T4DD02GF = eTty;
    const CCTK_REAL *restrict T4DD03GF = eTtz;
    const CCTK_REAL *restrict T4DD11GF = eTxx;
    const CCTK_REAL *restrict T4DD12GF = eTxy;
    const CCTK_REAL *restrict T4DD13GF = eTxz;
    const CCTK_REAL *restrict T4DD22GF = eTyy;
    const CCTK_REAL *restrict T4DD23GF = eTyz;
    const CCTK_REAL *restrict T4DD33GF = eTzz;
""" + T4UUstr_loop + """
}\n"""

        # Add C code string to dictionary (Python dictionaries are immutable)
        Csrcdict[append_to_make_code_defn_list(
            "driver_BSSN_T4UU.c")] = outstr.replace("BaikalETK", ThornName)
Beispiel #10
0
def GiRaFFE_Higher_Order():
    #Step 1.0: Set the spatial dimension parameter to 3.
    par.set_parval_from_str("grid::DIM", 3)
    DIM = par.parval_from_str("grid::DIM")

    # Step 1.1: Set the finite differencing order to 4.
    #par.set_parval_from_str("finite_difference::FD_CENTDERIVS_ORDER", 4)

    thismodule = "GiRaFFE_NRPy"

    # M_PI will allow the C code to substitute the correct value
    M_PI = par.Cparameters("#define", thismodule, "M_PI", "")
    # ADMBase defines the 4-metric in terms of the 3+1 spacetime metric quantities gamma_{ij}, beta^i, and alpha
    gammaDD = ixp.register_gridfunctions_for_single_rank2("AUX",
                                                          "gammaDD",
                                                          "sym01",
                                                          DIM=3)
    betaU = ixp.register_gridfunctions_for_single_rank1("AUX", "betaU", DIM=3)
    alpha = gri.register_gridfunctions("AUX", "alpha")
    # GiRaFFE uses the Valencia 3-velocity and A_i, which are defined in the initial data module(GiRaFFEfood)
    ValenciavU = ixp.register_gridfunctions_for_single_rank1("AUX",
                                                             "ValenciavU",
                                                             DIM=3)
    AD = ixp.register_gridfunctions_for_single_rank1("EVOL", "AD", DIM=3)
    # B^i must be computed at each timestep within GiRaFFE so that the Valencia 3-velocity can be evaluated
    BU = ixp.register_gridfunctions_for_single_rank1("AUX", "BU", DIM=3)

    # <a id='step3'></a>
    #
    # ## Step 1.2: Build the four metric $g_{\mu\nu}$, its inverse $g^{\mu\nu}$ and spatial derivatives $g_{\mu\nu,i}$ from ADM 3+1 quantities $\gamma_{ij}$, $\beta^i$, and $\alpha$
    #
    # $$\label{step3}$$
    # \[Back to [top](#top)\]
    #
    # Notice that the time evolution equation for $\tilde{S}_i$
    # $$
    # \partial_t \tilde{S}_i = - \partial_j \left( \alpha \sqrt{\gamma} T^j_{{\rm EM} i} \right) + \frac{1}{2} \alpha \sqrt{\gamma} T^{\mu \nu}_{\rm EM} \partial_i g_{\mu \nu}
    # $$
    # contains $\partial_i g_{\mu \nu} = g_{\mu\nu,i}$. We will now focus on evaluating this term.
    #
    # The four-metric $g_{\mu\nu}$ is related to the three-metric $\gamma_{ij}$, index-lowered shift $\beta_i$, and lapse $\alpha$ by
    # $$
    # g_{\mu\nu} = \begin{pmatrix}
    # -\alpha^2 + \beta^k \beta_k & \beta_j \\
    # \beta_i & \gamma_{ij}
    # \end{pmatrix}.
    # $$
    # This tensor and its inverse have already been built by the u0_smallb_Poynting__Cartesian.py module ([documented here](Tutorial-u0_smallb_Poynting-Cartesian.ipynb)), so we can simply load the module and import the variables.

    # Step 1.2: import u0_smallb_Poynting__Cartesian.py to set
    #           the four metric and its inverse. This module also sets b^2 and u^0.
    import u0_smallb_Poynting__Cartesian.u0_smallb_Poynting__Cartesian as u0b
    u0b.compute_u0_smallb_Poynting__Cartesian(gammaDD, betaU, alpha,
                                              ValenciavU, BU)

    betaD = ixp.zerorank1()
    for i in range(DIM):
        for j in range(DIM):
            betaD[i] += gammaDD[i][j] * betaU[j]

    # We will now pull in the four metric and its inverse.
    import BSSN.ADMBSSN_tofrom_4metric as AB4m  # NRPy+: ADM/BSSN <-> 4-metric conversions
    AB4m.g4DD_ito_BSSN_or_ADM("ADM")
    g4DD = AB4m.g4DD
    AB4m.g4UU_ito_BSSN_or_ADM("ADM")
    g4UU = AB4m.g4UU

    # Next we compute spatial derivatives of the metric, $\partial_i g_{\mu\nu} = g_{\mu\nu,i}$, written in terms of the three-metric, shift, and lapse. Simply taking the derivative of the expression for $g_{\mu\nu}$ above, we find
    # $$
    # g_{\mu\nu,l} = \begin{pmatrix}
    # -2\alpha \alpha_{,l} + \beta^k_{\ ,l} \beta_k + \beta^k \beta_{k,l} & \beta_{i,l} \\
    # \beta_{j,l} & \gamma_{ij,l}
    # \end{pmatrix}.
    # $$
    #
    # Notice the derivatives of the shift vector with its indexed lowered, $\beta_{i,j} = \partial_j \beta_i$. This can be easily computed in terms of the given ADMBase quantities $\beta^i$ and $\gamma_{ij}$ via:
    # \begin{align}
    # \beta_{i,j} &= \partial_j \beta_i \\
    #             &= \partial_j (\gamma_{ik} \beta^k) \\
    #             &= \gamma_{ik} \partial_j\beta^k + \beta^k \partial_j \gamma_{ik} \\
    # \beta_{i,j} &= \gamma_{ik} \beta^k_{\ ,j} + \beta^k \gamma_{ik,j}.
    # \end{align}
    #
    # Since this expression mixes Greek and Latin indices, we will need to store the expressions for each of the three spatial derivatives as separate variables.
    #
    # So, we will first set
    # $$ g_{00,l} = \underbrace{-2\alpha \alpha_{,l}}_{\rm Term\ 1} + \underbrace{\beta^k_{\ ,l} \beta_k}_{\rm Term\ 2} + \underbrace{\beta^k \beta_{k,l}}_{\rm Term\ 3} $$

    # Step 1.2, cont'd: Build spatial derivatives of the four metric
    # Step 1.2.a: Declare derivatives of grid functions. These will be handled by FD_outputC
    alpha_dD = ixp.declarerank1("alpha_dD")
    betaU_dD = ixp.declarerank2("betaU_dD", "nosym")
    gammaDD_dD = ixp.declarerank3("gammaDD_dD", "sym01")

    # Step 1.2.b: These derivatives will be constructed analytically.
    betaDdD = ixp.zerorank2()
    g4DDdD = ixp.zerorank3(DIM=4)

    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                # \gamma_{ik} \beta^k_{,j} + \beta^k \gamma_{ik,j}
                betaDdD[i][j] += gammaDD[i][k] * betaU_dD[k][j] + betaU[
                    k] * gammaDD_dD[i][k][j]

    # Step 1.2.c: Set the 00 components
    # Step 1.2.c.i: Term 1: -2\alpha \alpha_{,l}
    for l in range(DIM):
        g4DDdD[0][0][l + 1] = -2 * alpha * alpha_dD[l]

    # Step 1.2.c.ii: Term 2: \beta^k_{\ ,l} \beta_k
    for l in range(DIM):
        for k in range(DIM):
            g4DDdD[0][0][l + 1] += betaU_dD[k][l] * betaD[k]

    # Step 1.2.c.iii: Term 3: \beta^k \beta_{k,l}
    for l in range(DIM):
        for k in range(DIM):
            g4DDdD[0][0][l + 1] += betaU[k] * betaDdD[k][l]

    # Now we will contruct the other components of $g_{\mu\nu,l}$. We will first construct
    # $$ g_{i0,l} = g_{0i,l} = \beta_{i,l}, $$
    # then
    # $$ g_{ij,l} = \gamma_{ij,l} $$

    # Step 1.2.d: Set the i0 and 0j components
    for l in range(DIM):
        for i in range(DIM):
            # \beta_{i,l}
            g4DDdD[i + 1][0][l + 1] = g4DDdD[0][i + 1][l + 1] = betaDdD[i][l]

    #Step 1.2.e: Set the ij components
    for l in range(DIM):
        for i in range(DIM):
            for j in range(DIM):
                # \gamma_{ij,l}
                g4DDdD[i + 1][j + 1][l + 1] = gammaDD_dD[i][j][l]

    # <a id='step4'></a>
    #
    # # $T^{\mu\nu}_{\rm EM}$ and its derivatives
    #
    # Now that the metric and its derivatives are out of the way, let's return to the evolution equation for $\tilde{S}_i$,
    # $$
    # \partial_t \tilde{S}_i = - \partial_j \left( \alpha \sqrt{\gamma} T^j_{{\rm EM} i} \right) + \frac{1}{2} \alpha \sqrt{\gamma} T^{\mu \nu}_{\rm EM} \partial_i g_{\mu \nu}.
    # $$
    # We turn our focus now to $T^j_{{\rm EM} i}$ and its derivatives. To this end, we start by computing $T^{\mu \nu}_{\rm EM}$ (from eq. 27 of [Paschalidis & Shapiro's paper on their GRFFE code](https://arxiv.org/pdf/1310.3274.pdf)):
    #
    # $$\boxed{T^{\mu \nu}_{\rm EM} = b^2 u^{\mu} u^{\nu} + \frac{b^2}{2} g^{\mu \nu} - b^{\mu} b^{\nu}.}$$
    #
    # Notice that $T^{\mu\nu}_{\rm EM}$ is written in terms of
    #
    # * $b^\mu$, the 4-component magnetic field vector, related to the comoving magnetic field vector $B^i_{(u)}$
    # * $u^\mu$, the 4-velocity
    # * $g^{\mu \nu}$, the inverse 4-metric
    #
    # However, $\texttt{GiRaFFE}$ has access to only the following quantities, requiring in the following sections that we write the above quantities in terms of the following ones:
    #
    # * $\gamma_{ij}$, the 3-metric
    # * $\alpha$, the lapse
    # * $\beta^i$, the shift
    # * $A_i$, the vector potential
    # * $B^i$, the magnetic field (we assume only in the grid interior, not the ghost zones)
    # * $\left[\sqrt{\gamma}\Phi\right]$, the zero-component of the vector potential $A_\mu$, times the square root of the determinant of the 3-metric
    # * $v_{(n)}^i$, the Valencia 3-velocity
    # * $u^0$, the zero-component of the 4-velocity
    #
    # ## Step 2.0: $u^i$ and $b^i$ and related quantities
    # $$\label{step4}$$
    # \[Back to [top](#top)\]
    #
    # We begin by importing what we can from u0_smallb_Poynting__Cartesian.py. We will need the four-velocity $u^\mu$, which is related to the Valencia 3-velocity $v^i_{(n)}$ used directly by $\texttt{GiRaFFE}$ (see also [Duez, et al, eqs. 53 and 56](https://arxiv.org/pdf/astro-ph/0503420.pdf))
    # \begin{align}
    # u^i &= u^0 (\alpha v^i_{(n)} - \beta^i), \\
    # u_j &= \alpha u^0 \gamma_{ij} v^i_{(n)},
    # \end{align}
    # and $v^i_{(n)}$ is the Valencia three-velocity. These have already been constructed in terms of the Valencia 3-velocity and other 3+1 ADM quantities by the u0_smallb_Poynting__Cartesian.py module, so we can simply import these variables:

    # Step 2.0: u^i, b^i, and related quantities
    # Step 2.0.a: import the four-velocity, as written in terms of the Valencia 3-velocity
    global uD, uU
    uD = ixp.register_gridfunctions_for_single_rank1("AUX", "uD")
    uU = ixp.register_gridfunctions_for_single_rank1("AUX", "uU")
    u4upperZero = gri.register_gridfunctions("AUX", "u4upperZero")

    for i in range(DIM):
        uD[i] = u0b.uD[i].subs(u0b.u0, u4upperZero)
        uU[i] = u0b.uU[i].subs(u0b.u0, u4upperZero)

    # We also need the magnetic field 4-vector $b^{\mu}$, which is related to the magnetic field by [eqs. 23, 24, and 31 in Duez, et al](https://arxiv.org/pdf/astro-ph/0503420.pdf):
    # \begin{align}
    # b^0 &= \frac{1}{\sqrt{4\pi}} B^0_{\rm (u)} = \frac{u_j B^j}{\sqrt{4\pi}\alpha}, \\
    # b^i &= \frac{1}{\sqrt{4\pi}} B^i_{\rm (u)} = \frac{B^i + (u_j B^j) u^i}{\sqrt{4\pi}\alpha u^0}, \\
    # \end{align}
    # where $B^i$ is the variable tracked by the HydroBase thorn in the Einstein Toolkit. Again, these have already been built by the u0_smallb_Poynting__Cartesian.py module, so we can simply import the variables.

    # Step 2.0.b: import the small b terms
    smallb4U = ixp.zerorank1(DIM=4)
    smallb4D = ixp.zerorank1(DIM=4)
    for mu in range(4):
        smallb4U[mu] = u0b.smallb4U[mu].subs(u0b.u0, u4upperZero)
        smallb4D[mu] = u0b.smallb4D[mu].subs(u0b.u0, u4upperZero)

    smallb2 = u0b.smallb2etk.subs(u0b.u0, u4upperZero)

    # <a id='step5'></a>
    #
    # ## Step 2.1: Construct all components of the electromagnetic stress-energy tensor $T^{\mu \nu}_{\rm EM}$
    # $$\label{step5}$$
    #
    # \[Back to [top](#top)\]
    #
    # We now have all the pieces to calculate the stress-energy tensor,
    # $$T^{\mu \nu}_{\rm EM} = \underbrace{b^2 u^{\mu} u^{\nu}}_{\rm Term\ 1} +
    # \underbrace{\frac{b^2}{2} g^{\mu \nu}}_{\rm Term\ 2}
    # - \underbrace{b^{\mu} b^{\nu}}_{\rm Term\ 3}.$$
    # Because $u^0$ is a separate variable, we could build the $00$ component separately, then the $\mu0$ and $0\nu$ components, and finally the $\mu\nu$ components. Alternatively, for clarity, we could create a temporary variable $u^\mu=\left( u^0, u^i \right)$

    # Step 2.1: Construct the electromagnetic stress-energy tensor
    # Step 2.1.a: Set up the four-velocity vector
    u4U = ixp.zerorank1(DIM=4)
    u4U[0] = u4upperZero
    for i in range(DIM):
        u4U[i + 1] = uU[i]

    # Step 2.1.b: Build T4EMUU itself
    T4EMUU = ixp.zerorank2(DIM=4)
    for mu in range(4):
        for nu in range(4):
            # Term 1: b^2 u^{\mu} u^{\nu}
            T4EMUU[mu][nu] = smallb2 * u4U[mu] * u4U[nu]

    for mu in range(4):
        for nu in range(4):
            # Term 2: b^2 / 2 g^{\mu \nu}
            T4EMUU[mu][nu] += smallb2 * g4UU[mu][nu] / 2

    for mu in range(4):
        for nu in range(4):
            # Term 3: -b^{\mu} b^{\nu}
            T4EMUU[mu][nu] += -smallb4U[mu] * smallb4U[nu]

    # <a id='step6'></a>
    #
    # # Step 2.2: Derivatives of the electromagnetic stress-energy tensor
    # $$\label{step6}$$
    #
    # \[Back to [top](#top)\]
    #
    # If we look at the evolution equation, we see that we will need spatial  derivatives of $T^{\mu\nu}_{\rm EM}$. When confronted with derivatives of complicated expressions, it is generally convenient to declare those expressions as gridfunctions themselves, allowing NRPy+ to take finite-difference derivatives of the expressions. This can even reduce the truncation error associated with the finite differences, because the alternative is to use a function of several finite-difference derivatives, allowing more error to accumulate than the extra gridfunction will introduce. While we will use that technique for some of the subexpressions of $T^{\mu\nu}_{\rm EM}$, we don't want to rely on it for the whole expression; doing so would require us to take the derivative of the magnetic field $B^i$, which is itself found by finite-differencing the vector potential $A_i$. Thus $B^i$ cannot be *consistently* defined in ghost zones. To potentially reduce numerical errors induced by inconsistent finite differencing, we will differentiate $T^{\mu\nu}_{\rm EM}$ term-by-term so that finite-difference derivatives of $A_i$ appear.
    #
    # We will now now take these spatial derivatives of $T^{\mu\nu}_{\rm EM}$, applying the chain rule until it is only in terms of basic gridfunctions and their derivatives: $\alpha$, $\beta^i$, $\gamma_{ij}$, $A_i$, and the four-velocity $u^i$. Along the way, we will also set up useful temporary variables representing the steps of the chain rule. (Notably, *all* of these quantities will be written in terms of $A_i$ and its derivatives):
    #
    # * $B^i$ (already computed in terms of $A_k$, via $B^i = \epsilon^{ijk} \partial_j A_k$),
    # * $B^i_{,l}$,
    # * $b^i$ and $b_i$ (already computed),
    # * $b^i_{,k}$,
    # * $b^2$ (already computed),
    # * and $\left(b^2\right)_{,j}$.
    #
    # (The variables not already computed will not be seen by the ETK, as they are written in terms of $A_i$ and its derivatives; they simply help to organize the NRPy+ code.)
    #
    # So then,
    # \begin{align}
    # \partial_j T^{j}_{{\rm EM} i} &= \partial_j (g_{\mu i} T^{\mu j}_{\rm EM}) \\
    # &= \partial_j \left[g_{\mu i} \left(b^2 u^j u^\mu + \frac{b^2}{2} g^{j\mu} - b^j b^\mu\right)\right] \\
    # &= \underbrace{g_{\mu i,j} T^{\mu j}_{\rm EM}}_{\rm Term\ A} + g_{\mu i} \left( \underbrace{\partial_j \left(b^2 u^j u^\mu \right)}_{\rm Term\ B} + \underbrace{\partial_j \left(\frac{b^2}{2} g^{j\mu}\right)}_{\rm Term\ C} - \underbrace{\partial_j \left(b^j b^k\right)}_{\rm Term\ D} \right) \\
    # \end{align}
    # Following the product and chain rules for each term, we find that
    # \begin{align}
    # {\rm Term\ B} &= \partial_j (b^2 u^j u^\mu) \\
    #               &= \partial_j b^2 u^j u^\mu + b^2 \partial_j u^j u^\mu + b^2 u^j \partial_j u^\mu \\
    #               &= \underbrace{\left(b^2\right)_{,j} u^j u^\mu + b^2 u^j_{,j} u^\mu + b^2 u^j u^{\mu}_{,j}}_{\rm To\ Term\ 2\ below} \\
    # {\rm Term\ C} &= \partial_j \left(\frac{b^2}{2} g^{j\mu}\right) \\
    #               &= \frac{1}{2} \left( \partial_j b^2 g^{j\mu} + b^2 \partial_j g^{j\mu} \right) \\
    #               &= \underbrace{\frac{1}{2} \left(b^2\right)_{,j} g^{j\mu} + \frac{b^2}{2} g^{j\mu}_{\ ,j}}_{\rm To\ Term\ 3\ below} \\
    # {\rm Term\ D} &= \partial_j (b^j b^\mu) \\
    #               &= \underbrace{b^j_{,j} b^\mu + b^j b^\mu_{,j}}_{\rm To\ Term\ 2\ below}\\
    # \end{align}
    #
    # So,
    # \begin{align}
    # \partial_j T^{j}_{{\rm EM} i} &= g_{\mu i,j} T^{\mu j}_{\rm EM} \\
    # &+ g_{\mu i} \left(\left(b^2\right)_{,j} u^j u^\mu +b^2 u^j_{,j} u^\mu + b^2 u^j u^{\mu}_{,j} + \frac{1}{2}\left(b^2\right)_{,j} g^{j\mu} + \frac{b^2}{2} g^{j\mu}_{\ ,j} + b^j_{,j} b^\mu + b^j b^\mu_{,j}\right);
    # \end{align}
    # We will rearrange this once more, collecting the $b^2$ terms together, noting that Term A will become Term 1:
    # \begin{align}
    # \partial_j  T^{j}_{{\rm EM} i} =& \
    # \underbrace{g_{\mu i,j} T^{\mu j}_{\rm EM}}_{\rm Term\ 1} \\
    # & + \underbrace{g_{\mu i} \left( b^2 u^j_{,j} u^\mu + b^2 u^j u^\mu_{,j} + \frac{b^2}{2} g^{j\mu}_{\ ,j} + b^j_{,j} b^\mu + b^j b^\mu_{,j} \right)}_{\rm Term\ 2} \\
    # & + \underbrace{g_{\mu i} \left( \left(b^2\right)_{,j} u^j u^\mu + \frac{1}{2} \left(b^2\right)_{,j} g^{j\mu} \right).}_{\rm Term\ 3} \\
    # \end{align}
    #
    # <a id='table2'></a>
    #
    # **List of Derivatives**
    # $$\label{table2}$$
    #
    # Note that this is in terms of the derivatives of several other quantities:
    #
    # * [Step 2.2.a](#capitalBideriv): $B^i_{,l}$: Since $b^i$ is itself a function of $B^i$, we will first need the derivatives $B^i_{,l}$ in terms of the evolved quantity $A_i$ (the vector potential).
    # * [Step 2.2.b](#bideriv): $b^i_{,k}$: Once we have $B^i_{,l}$ we can evaluate derivatives of $b^i$, $b^i_{,k}$
    # * [Step 2.2.c](#b2deriv): The derivative of $b^2 = g_{\mu\nu} b^\mu b^\nu$, $\left(b^2\right)_{,j}$
    # * [Step 2.2.d](#gupijderiv): Derivatives of $g^{\mu\nu}$, $g^{\mu\nu}_{\ ,k}$
    # * [Step 2.2.e](#alltogether): Putting it together: $\partial_j T^{j}_{{\rm EM} i}$
    #     * [Step 2.2.e.i](#alltogether1): Putting it together: Term 1
    #     * [Step 2.2.e.ii](#alltogether2): Putting it together: Term 2
    #     * [Step 2.2.e.iii](#alltogether3): Putting it together: Term 3

    # <a id='capitalBideriv'></a>
    #
    # ## Step 2.2.a: Derivatives of $B^i$
    #
    # $$\label{capitalbideriv}$$
    #
    # \[Back to [List of Derivatives](#table2)\]
    #
    # First, we will build the derivatives of the magnetic field. Since $b^i$ is a function of $B^i$, we will start from the definition of $B^i$ in terms of $A_i$, $B^i = \frac{[ijk]}{\sqrt{\gamma}} \partial_j A_k$. We will first apply the product rule, noting that the symbol $[ijk]$ consists purely of the integers $-1, 0, 1$ and thus can be treated as a constant in this process.
    # \begin{align}
    # B^i_{,l} &= \partial_l \left( \frac{[ijk]}{\sqrt{\gamma}} \partial_j A_k \right)  \\
    #          &= [ijk] \partial_l \left( \frac{1}{\sqrt{\gamma}}\right) \partial_j A_k + \frac{[ijk]}{\sqrt{\gamma}} \partial_l \partial_j A_k \\
    #          &= [ijk]\left(-\frac{\gamma_{,l}}{2\gamma^{3/2}}\right) \partial_j A_k + \frac{[ijk]}{\sqrt{\gamma}} \partial_l \partial_j A_k \\
    # \end{align}
    # Now, we will substitute back in for the definition of the Levi-Civita tensor: $\epsilon^{ijk} = [ijk] / \sqrt{\gamma}$. Then we will substitute the magnetic field $B^i$ back in.
    # \begin{align}
    # B^i_{,l} &= -\frac{\gamma_{,l}}{2\gamma} \epsilon^{ijk} \partial_j A_k + \epsilon^{ijk} \partial_l \partial_j A_k \\
    #          &= -\frac{\gamma_{,l}}{2\gamma} B^i + \epsilon^{ijk} A_{k,jl}, \\
    # \end{align}
    #
    # Thus, the expression we are left with for the derivatives of the magnetic field is:
    # \begin{align}
    # B^i_{,l} &= \underbrace{-\frac{\gamma_{,l}}{2\gamma} B^i}_{\rm Term\ 1} + \underbrace{\epsilon^{ijk} A_{k,jl}}_{\rm Term\ 2}, \\
    # \end{align}
    # where $\epsilon^{ijk} = [ijk] / \sqrt{\gamma}$ is the antisymmetric Levi-Civita tensor and $\gamma$ is the determinant of the three-metric.
    #

    # Step 2.2: Derivatives of the electromagnetic stress-energy tensor

    # We already have a handy function to define the Levi-Civita symbol in WeylScalars
    import WeylScal4NRPy.WeylScalars_Cartesian as weyl
    # Initialize the Levi-Civita tensor by setting it equal to the Levi-Civita symbol
    LeviCivitaSymbolDDD = weyl.define_LeviCivitaSymbol_rank3()
    LeviCivitaTensorDDD = ixp.zerorank3()
    LeviCivitaTensorUUU = ixp.zerorank3()

    global gammaUU, gammadet
    gammaUU = ixp.register_gridfunctions_for_single_rank2(
        "AUX", "gammaUU", "sym01")
    gammadet = gri.register_gridfunctions("AUX", "gammadet")
    gammaUU, gammadet = ixp.symm_matrix_inverter3x3(gammaDD)

    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                LeviCivitaTensorDDD[i][j][
                    k] = LeviCivitaSymbolDDD[i][j][k] * sp.sqrt(gammadet)
                LeviCivitaTensorUUU[i][j][
                    k] = LeviCivitaSymbolDDD[i][j][k] / sp.sqrt(gammadet)

    AD_dD = ixp.declarerank2("AD_dD", "nosym")

    # Step 2.2.a: Construct the derivatives of the magnetic field.
    gammadet_dD = ixp.declarerank1("gammadet_dD")

    AD_dDD = ixp.declarerank3("AD_dDD", "sym12")
    # The other partial derivatives of B^i
    BUdD = ixp.zerorank2()
    for i in range(DIM):
        for l in range(DIM):
            # Term 1: -\gamma_{,l} / (2\gamma) B^i
            BUdD[i][l] = -gammadet_dD[l] * BU[i] / (2 * gammadet)

    for i in range(DIM):
        for l in range(DIM):
            for j in range(DIM):
                for k in range(DIM):
                    # Term 2: \epsilon^{ijk} A_{k,jl}
                    BUdD[i][
                        l] += LeviCivitaTensorUUU[i][j][k] * AD_dDD[k][j][l]

    # <a id='bideriv'></a>
    #
    # ## Step 2.2.b: Derivatives of $b^i$
    # $$\label{bideriv}$$
    #
    # \[Back to [List of Derivatives](#table2)\]
    #
    # Now, we will code the derivatives of the spatial components of $b^{\mu}$, $b^i$:
    # $$
    # b^i_{,k} = \frac{1}{\sqrt{4 \pi}} \frac{\left(\alpha u^0\right)  \left(B^i_{,k} + u_{j,k} B^j u^i + u_j B^j_{,k} u^i + u_j B^j u^i_{,k}\right) - \left(B^i + (u_j B^j) u^i\right) \partial_k \left(\alpha u^0\right)}{\left(\alpha u^0\right)^2}.
    # $$
    #
    # We should note that while $b^\mu$ is a four-vector (and the code reflects this: $\text{smallb4U}$ and $\text{smallb4U}$ have $\text{DIM=4}$), we only need the spatial components. We will only focus on the spatial components for the moment.
    #
    #
    # Let's go into a little more detail on where this comes from. We start from the definition $$b^i = \frac{B^i + (u_j B^j) u^i}{\sqrt{4\pi}\alpha u^0};$$ we then apply the quotient rule:
    # \begin{align}
    # b^i_{,k} &= \frac{\left(\sqrt{4\pi}\alpha u^0\right) \partial_k \left(B^i + (u_j B^j) u^i\right) - \left(B^i + (u_j B^j) u^i\right) \partial_k \left(\sqrt{4\pi}\alpha u^0\right)}{\left(\sqrt{4\pi}\alpha u^0\right)^2} \\
    # &= \frac{1}{\sqrt{4 \pi}} \frac{\left(\alpha u^0\right) \partial_k \left(B^i + (u_j B^j) u^i\right) - \left(B^i + (u_j B^j) u^i\right) \partial_k \left(\alpha u^0\right)}{\left(\alpha u^0\right)^2} \\
    # \end{align}
    # Note that $\left( \alpha u^0 \right)$ is being used as its own gridfunction, so $\partial_k \left(a u^0\right)$ will be finite-differenced by NRPy+ directly. We will also apply the product rule to the term $\partial_k \left(B^i + (u_j B^j) u^i\right) = B^i_{,k} + u_{j,k} B^j u^i + u_j B^j_{,k} u^i + u_j B^j u^i_{,k}$. So,
    # $$ b^i_{,k} = \frac{1}{\sqrt{4 \pi}} \frac{\left(\alpha u^0\right)  \left(B^i_{,k} + u_{j,k} B^j u^i + u_j B^j_{,k} u^i + u_j B^j u^i_{,k}\right) - \left(B^i + (u_j B^j) u^i\right) \partial_k \left(\alpha u^0\right)}{\left(\alpha u^0\right)^2}. $$
    #
    # It will be easier to code this up if we rearrange these terms to group together the terms that involve contractions over $j$. Doing that, we find
    # $$
    # b^i_{,k} = \frac{\overbrace{\alpha u^0 B^i_{,k} - B^i \partial_k (\alpha u^0)}^{\rm Term\ Num1} + \overbrace{\left( \alpha u^0 \right) \left( u_{j,k} B^j u^i + u_j B^j_{,k} u^i + u_j B^j u^i_{,k} \right)}^{\rm Term\ Num2.a} - \overbrace{\left( u_j B^j u^i \right) \partial_k \left( \alpha u^0 \right) }^{\rm Term\ Num2.b}}{\underbrace{\sqrt{4 \pi} \left( \alpha u^0 \right)^2}_{\rm Term\ Denom}}.
    # $$

    global u0alpha
    u0alpha = gri.register_gridfunctions("AUX", "u0alpha")
    u0alpha = alpha * u4upperZero
    u0alpha_dD = ixp.declarerank1("u0alpha_dD")
    uU_dD = ixp.declarerank2("uU_dD", "nosym")
    uD_dD = ixp.declarerank2("uD_dD", "nosym")

    # Step 2.2.b: Construct derivatives of the small b vector
    # smallbUdD represents the derivative of smallb4U
    smallbUdD = ixp.zerorank2()
    for i in range(DIM):
        for k in range(DIM):
            # Term Num1: \alpha u^0 B^i_{,k} - B^i \partial_k (\alpha u^0)
            smallbUdD[i][k] += u0alpha * BUdD[i][k] - BU[i] * u0alpha_dD[k]

    for i in range(DIM):
        for k in range(DIM):
            for j in range(DIM):
                # Term Num2.a: terms that require contractions over k, and thus an extra loop.
                # ( \alpha u^0 ) (  u_{j,k} B^j u^i
                #                 + u_j B^j_{,k} u^i
                #                 + u_j B^j u^i_{,k} )
                smallbUdD[i][k] += u0alpha * (uD_dD[j][k] * BU[j] * uU[i] +
                                              uD[j] * BUdD[j][k] * uU[i] +
                                              uD[j] * BU[j] * uU_dD[i][k])

    for i in range(DIM):
        for k in range(DIM):
            for j in range(DIM):
                #Term 2.b (More contractions over k): ( u_j B^j u^i ) ( \alpha u^0 ),k
                smallbUdD[i][k] += -(uD[j] * BU[j] * uU[i]) * u0alpha_dD[k]

    for i in range(DIM):
        for k in range(DIM):
            # Term Denom: Divide the numerator by sqrt(4 pi) * (alpha u^0)^2
            smallbUdD[i][k] /= sp.sqrt(4 * M_PI) * u0alpha * u0alpha

    # <a id='b2deriv'></a>
    #
    # ## Step 2.2.c: Derivative of $b^2$
    # $$\label{b2deriv}$$
    #
    # \[Back to [List of Derivatives](#table2)\]
    #
    # Here, we will take the derivative of $b^2 = g_{\mu\nu} b^\mu b^\nu$. Using the product rule,
    # \begin{align}
    # \left(b^2\right)_{,j} &= \partial_j \left( g_{\mu\nu} b^\mu b^\nu \right) \\
    #                       &= g_{\mu\nu,j} b^\mu b^\nu + g_{\mu\nu} b^\mu_{,j} b^\nu + g_{\mu\nu} b^\mu b^\nu_{,j} \\
    #                       &= g_{\mu\nu,j} b^\mu b^\nu + 2 g_{\mu\nu} b^\mu_{,j} b^\nu.
    # \end{align}
    # We have already defined the spatial derivatives of the four-metric $g_{\mu\nu,j}$ in [this section](#step3); we have also defined the spatial derivatives of spatial components of $b^\mu$, $b^i_{,k}$ in [this section](#bideriv). Notice the above expression requires spatial derivatives of the *zeroth* component of $b^\mu$ as well, $b^0_{,j}$, which we will now compute. Starting with the definition, and applying the quotient rule:
    # \begin{align}
    # b^0 &= \frac{u_k B^k}{\sqrt{4\pi}\alpha}, \\
    # \rightarrow b^0_{,j} &= \frac{1}{\sqrt{4\pi}} \frac{\alpha \left( u_{k,j} B^k + u_k B^k_{,j} \right) - u_k B^k \alpha_{,j}}{\alpha^2} \\
    #     &= \frac{\alpha u_{k,j} B^k + \alpha u_k B^k_{,j} - \alpha_{,j} u_k B^k}{\sqrt{4\pi} \alpha^2}.
    # \end{align}
    # We will first code the numerator, and then divide through by the denominator.

    # Step 2.2.c: Construct the derivative of b^2
    # First construct the derivative b^0_{,j}
    # This four-vector will make b^2 simpler:
    smallb4UdD = ixp.zerorank2(DIM=4)
    # Fill in the zeroth component
    for j in range(DIM):
        for k in range(DIM):
            # The numerator:  \alpha u_{k,j} B^k
            #               + \alpha u_k B^k_{,j}
            #               - \alpha_{,j} u_k B^k
            smallb4UdD[0][j + 1] += alpha * uD_dD[k][j] * BU[k] + alpha * uD[
                k] * BUdD[k][j] - alpha_dD[j] * uD[k] * BU[k]
    for j in range(DIM):
        # Divide through by the denominator: \sqrt{4\pi} \alpha^2
        smallb4UdD[0][j + 1] /= sp.sqrt(4 * M_PI) * alpha * alpha

    # At this point, both $b^0_{\ ,j}$ and $b^i_{\ ,j}$ have been computed, but one exists inconveniently in the $4\times 4$ component $\verb|smallb4UdD[][]|$ and the other in the $3\times 3$ component $\verb|smallbUdD[][]|$. So that we can perform full implied sums over $g_{\mu\nu} b^\mu_{,j} b^\nu$ more conveniently, we will now store all information from $\verb|smallbUdD[i][j]|$ into $\verb|smallb4UdD[i+1][j+1]|$:

    # Now, we'll fill out the rest of the four-vector with b^i_{,j} that we derived above.
    for i in range(DIM):
        for j in range(DIM):
            smallb4UdD[i + 1][j + 1] = smallbUdD[i][j]

    # Using 4-component (Greek-indexed) quantities, we can now complete our construction of
    # $$\left(b^2\right)_{,j} = g_{\mu\nu,j} b^\mu b^\nu + 2 g_{\mu\nu} b^\mu_{,j} b^\nu:$$

    smallb2_dD = ixp.zerorank1()
    for j in range(DIM):
        for mu in range(4):
            for nu in range(4):
                #   g_{\mu\nu,j} b^\mu b^\nu
                # + 2 g_{\mu\nu} b^\mu_{,j} b^\nu
                smallb2_dD[j] += g4DDdD[mu][nu][j + 1] * smallb4U[
                    mu] * smallb4U[nu] + 2 * g4DD[mu][nu] * smallb4UdD[mu][
                        j + 1] * smallb4U[nu]

    # <a id='gupijderiv'></a>
    #
    # ## Step 2.2.d: Derivatives of $g^{\mu\nu}$
    # $$\label{gupijderiv}$$
    #
    # \[Back to [List of Derivatives](#table2)\]
    #
    # We will need derivatives of the inverse four-metric, as well. Let us begin with $g^{00}$: since $g^{00} = -1/\alpha^2$ ([Gourgoulhon, eq. 4.49](https://arxiv.org/pdf/gr-qc/0703035.pdf)), $$g^{00}_{\ ,k} = \frac{2 \alpha_{,k}}{\alpha^3}$$
    #

    # Step 2.2.d: Construct derivatives of the components of g^{\mu\nu}
    g4UUdD = ixp.zerorank3(DIM=4)

    for k in range(DIM):
        # 2 \alpha_{,k} / \alpha^3
        g4UUdD[0][0][k + 1] = 2 * alpha_dD[k] / alpha**3

    # Now, we will code the $g^{i0}_{\ ,k}$ and $g^{0j}_{\ ,k}$ components. According to [Gourgoulhon, eq. 4.49](https://arxiv.org/pdf/gr-qc/0703035.pdf), $g^{i0} = g^{0i} = \beta^i/\alpha^2$, so $$g^{i0}_{\ ,k} = g^{0i}_{\ ,k} = \frac{\alpha^2 \beta^i_{,k} - 2 \beta^i \alpha \alpha_{,k}}{\alpha^4}$$ by the quotient rule. So, we'll code
    # $$
    # g^{i0} = g^{0i} =
    # \underbrace{\frac{\beta^i_{,k}}{\alpha^2}}_{\rm Term\ 1}
    # - \underbrace{\frac{2 \beta^i \alpha_{,k}}{\alpha^3}}_{\rm Term\ 2}
    # $$

    for k in range(DIM):
        for i in range(DIM):
            # Term 1:                                    \beta^i_{,k} / \alpha^2
            g4UUdD[i + 1][0][k +
                             1] = g4UUdD[0][i +
                                            1][k +
                                               1] = betaU_dD[i][k] / alpha**2

    for k in range(DIM):
        for i in range(DIM):
            # Term 2:              -2 \beta^i \alpha_{,k} / \alpha^3
            g4UUdD[i + 1][0][k + 1] += -2 * betaU[i] * alpha_dD[k] / alpha**3
            g4UUdD[0][i + 1][k + 1] += -2 * betaU[i] * alpha_dD[k] / alpha**3

    # We will also need derivatives of the spatial part of the inverse four-metric: since $g^{ij} = \gamma^{ij} - \frac{\beta^i \beta^j}{\alpha^2}$ ([Gourgoulhon, eq. 4.49](https://arxiv.org/pdf/gr-qc/0703035.pdf)),
    # \begin{align}
    # g^{ij}_{\ ,k} &= \gamma^{ij}_{\ ,k} - \frac{\alpha^2 \partial_k (\beta^i \beta^j) - \beta^i \beta^j \partial_k \alpha^2}{(\alpha^2)^2} \\
    # &= \gamma^{ij}_{\ ,k} - \frac{\alpha^2\beta^i \beta^j_{,k}+\alpha^2\beta^i_{,k} \beta^j-2\beta^i \beta^j \alpha \alpha_{,k}}{\alpha^4}. \\
    # &= \gamma^{ij}_{\ ,k} - \frac{\alpha\beta^i \beta^j_{,k}+\alpha\beta^i_{,k} \beta^j-2\beta^i \beta^j \alpha_{,k}}{\alpha^3} \\
    # g^{ij}_{\ ,k} &= \underbrace{\gamma^{ij}_{\ ,k}}_{\rm Term\ 1} - \underbrace{\frac{\beta^i \beta^j_{,k}}{\alpha^2}}_{\rm Term\ 2} - \underbrace{\frac{\beta^i_{,k} \beta^j}{\alpha^2}}_{\rm Term\ 3} + \underbrace{\frac{2\beta^i \beta^j \alpha_{,k}}{\alpha^3}}_{\rm Term\ 4}. \\
    # \end{align}
    #

    gammaUU_dD = ixp.declarerank3("gammaUU_dD", "sym01")

    # The spatial derivatives of the spatial components of the four metric:
    # Term 1: \gamma^{ij}_{\ ,k}
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                g4UUdD[i + 1][j + 1][k + 1] = gammaUU_dD[i][j][k]

    # Term 2: - \beta^i \beta^j_{,k} / \alpha^2
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                g4UUdD[i + 1][j +
                              1][k +
                                 1] += -betaU[i] * betaU_dD[j][k] / alpha**2

    # Term 3: - \beta^i_{,k} \beta^j / \alpha^2
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                g4UUdD[i + 1][j +
                              1][k +
                                 1] += -betaU_dD[i][k] * betaU[j] / alpha**2

    # Term 4: 2\beta^i \beta^j \alpha_{,k}\alpha^3
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                g4UUdD[i + 1][j + 1][
                    k + 1] += 2 * betaU[i] * betaU[j] * alpha_dD[k] / alpha**3

    # <a id='alltogether'></a>
    #
    # ## Step 2.2.e: Putting it together:
    # $$\label{alltogether}$$
    #
    # \[Back to [List of Derivatives](#table2)\]
    #
    # So, we can now put it all together, starting from the expression we derived above in [Step 2.2](#step6):
    # \begin{align}
    # \partial_j  T^{j}_{{\rm EM} i} =& \
    # \underbrace{g_{\mu i,j} T^{\mu j}_{\rm EM}}_{\rm Term\ 1} \\
    # & + \underbrace{g_{\mu i} \left( b^2 u^j_{,j} u^\mu + b^2 u^j u^\mu_{,j} + \frac{b^2}{2} g^{j\mu}_{\ ,j} + b^j_{,j} b^\mu + b^j b^\mu_{,j} \right)}_{\rm Term\ 2} \\
    # & + \underbrace{g_{\mu i} \left( \left(b^2\right)_{,j} u^j u^\mu + \frac{1}{2} \left(b^2\right)_{,j} g^{j\mu} \right).}_{\rm Term\ 3} \\
    # \end{align}
    #
    # <a id='alltogether1'></a>
    #
    # ### Step 2.2.e.i: Putting it together: Term 1
    # $$\label{alltogether1}$$
    #
    # \[Back to [List of Derivatives](#table2)\]
    #
    # We will now construct this term by term. Term 1 is straightforward: $${\rm Term\ 1} = \gamma_{\mu i,j} T^{\mu j}_{\rm EM}.$$

    # Step 2.2.e: Construct TEMUDdD_contracted itself
    # Step 2.2.e.i
    TEMUDdD_contracted = ixp.zerorank1()
    for i in range(DIM):
        for j in range(DIM):
            for mu in range(4):
                # Term 1:                g_{\mu i,j} T^{\mu j}_{\rm EM}
                TEMUDdD_contracted[i] += g4DDdD[mu][i + 1][j +
                                                           1] * T4EMUU[mu][j +
                                                                           1]

    # We'll need derivatives of u4U for the next part:
    u4UdD = ixp.zerorank2(DIM=4)
    u4upperZero_dD = ixp.declarerank1(
        "u4upperZero_dD"
    )  # Note that derivatives can't be done in 4-D with the current version of NRPy
    for i in range(DIM):
        u4UdD[0][i + 1] = u4upperZero_dD[i]
    for i in range(DIM):
        for j in range(DIM):
            u4UdD[i + 1][j + 1] = uU_dD[i][j]

    # <a id='alltogether2'></a>
    #
    # ### Step 2.2.e.ii: Putting it together: Term 2
    # $$\label{alltogether2}$$
    #
    # \[Back to [List of Derivatives](#table2)\]
    #
    # We will now add $${\rm Term\ 2} = g_{\mu i} \left( \underbrace{b^2 u^j_{,j} u^\mu}_{\rm Term\ 2a} + \underbrace{b^2 u^j u^\mu_{,j}}_{\rm Term\ 2b} + \underbrace{\frac{b^2}{2} g^{j\mu}_{\ ,j}}_{\rm Term\ 2c} + \underbrace{b^j_{,j} b^\mu}_{\rm Term\ 2d} + \underbrace{b^j b^\mu_{,j}}_{\rm Term\ 2e} \right)$$ to $\partial_j  T^{j}_{{\rm EM} i}$. These are the terms that involve contractions over $k$ (but no metric derivatives like Term 1 had).
    #

    # Step 2.2.e.ii
    for i in range(DIM):
        for j in range(DIM):
            for mu in range(4):
                # Term 2a: g_{\mu i} b^2 u^j_{,j} u^\mu
                TEMUDdD_contracted[i] += g4DD[mu][
                    i + 1] * smallb2 * uU_dD[j][j] * u4U[mu]

    for i in range(DIM):
        for j in range(DIM):
            for mu in range(4):
                # Term 2b: g_{\mu i} b^2 u^j u^\mu_{,j}
                TEMUDdD_contracted[i] += g4DD[mu][
                    i + 1] * smallb2 * uU[j] * u4UdD[mu][j + 1]

    for i in range(DIM):
        for j in range(DIM):
            for mu in range(4):
                # Term 2c: g_{\mu i} b^2 g^{j \mu}_{,j} / 2
                TEMUDdD_contracted[i] += g4DD[mu][i + 1] * smallb2 * g4UUdD[
                    j + 1][mu][j + 1] / 2

    for i in range(DIM):
        for j in range(DIM):
            for mu in range(4):
                # Term 2d: g_{\mu i} b^j_{,j} b^\mu
                TEMUDdD_contracted[i] += g4DD[mu][
                    i + 1] * smallbUdD[j][j] * smallb4U[mu]

    for i in range(DIM):
        for j in range(DIM):
            for mu in range(4):
                # Term 2e: g_{\mu i} b^j b^\mu_{,j}
                TEMUDdD_contracted[i] += g4DD[mu][i + 1] * smallb4U[
                    j + 1] * smallb4UdD[mu][j + 1]

    # <a id='alltogether3'></a>
    #
    # ### Step 2.2.e.iii: Putting it together: Term 3
    # $$\label{alltogether3}$$
    #
    # \[Back to [List of Derivatives](#table2)\]
    #
    # Now, we will add $${\rm Term\ 3} = g_{\mu i} \left( \underbrace{\left(b^2\right)_{,j} u^j u^\mu}_{\rm Term\ 3a} + \underbrace{\frac{1}{2} \left(b^2\right)_{,j} g^{j\mu}}_{\rm Term\ 3b} \right).$$

    # Step 2.2.e.iii
    for i in range(DIM):
        for j in range(DIM):
            for mu in range(4):
                # Term 3a: g_{\mu i} ( b^2 )_{,j} u^j u^\mu
                TEMUDdD_contracted[i] += g4DD[mu][
                    i + 1] * smallb2_dD[j] * uU[j] * u4U[mu]

    for i in range(DIM):
        for j in range(DIM):
            for mu in range(4):
                # Term 3b: g_{mu i} ( b^2 )_{,j} g^{j\mu} / 2
                TEMUDdD_contracted[i] += g4DD[mu][
                    i + 1] * smallb2_dD[j] * g4UU[j + 1][mu] / 2

    #
    # # Evolution equation for $\tilde{S}_i$
    # <a id='step7'></a>
    #
    # ## Step 3.0: Construct the evolution equation for $\tilde{S}_i$
    # $$\label{step7}$$
    #
    # \[Back to [top](#top)\]
    #
    # Finally, we will return our attention to the time evolution equation (from eq. 13 of the [original paper](https://arxiv.org/pdf/1704.00599.pdf)),
    # \begin{align}
    # \partial_t \tilde{S}_i &= - \partial_j \left( \alpha \sqrt{\gamma} T^j_{{\rm EM} i} \right) + \frac{1}{2} \alpha \sqrt{\gamma} T^{\mu \nu}_{\rm EM} \partial_i g_{\mu \nu} \\
    #                        &= -T^j_{{\rm EM} i} \partial_j (\alpha \sqrt{\gamma}) - \alpha \sqrt{\gamma} \partial_j T^j_{{\rm EM} i} + \frac{1}{2} \alpha \sqrt{\gamma} T^{\mu \nu}_{\rm EM} \partial_i g_{\mu \nu} \\
    #                        &= \underbrace{-g_{i\mu} T^{\mu j}_{\rm EM} \partial_j (\alpha \sqrt{\gamma})
    # }_{\rm Term\ 1} - \underbrace{\alpha \sqrt{\gamma} \partial_j T^j_{{\rm EM} i}}_{\rm Term\ 2} + \underbrace{\frac{1}{2} \alpha \sqrt{\gamma} T^{\mu \nu}_{\rm EM} \partial_i g_{\mu \nu}}_{\rm Term\ 3} .
    # \end{align}
    # We will first take derivatives of $\alpha \sqrt{\gamma}$, then construct each term in turn.

    # Step 3.0: Construct the evolution equation for \tilde{S}_i
    # Here, we set up the necessary machinery to take FD derivatives of alpha * sqrt(gamma)
    global alpsqrtgam
    alpsqrtgam = gri.register_gridfunctions("AUX", "alpsqrtgam")
    alpsqrtgam = alpha * sp.sqrt(gammadet)
    alpsqrtgam_dD = ixp.declarerank1("alpsqrtgam_dD")

    global Stilde_rhsD
    Stilde_rhsD = ixp.zerorank1()
    # The first term: g_{i\mu} T^{\mu j}_{\rm EM} \partial_j (\alpha \sqrt{\gamma})
    for i in range(DIM):
        for j in range(DIM):
            for mu in range(4):
                Stilde_rhsD[i] += -g4DD[i + 1][mu] * T4EMUU[mu][
                    j + 1] * alpsqrtgam_dD[j]

    # The second term: \alpha \sqrt{\gamma} \partial_j T^j_{{\rm EM} i}
    for i in range(DIM):
        Stilde_rhsD[i] += -alpsqrtgam * TEMUDdD_contracted[i]

    # The third term: \alpha \sqrt{\gamma} T^{\mu \nu}_{\rm EM} \partial_i g_{\mu \nu} / 2
    for i in range(DIM):
        for mu in range(4):
            for nu in range(4):
                Stilde_rhsD[i] += alpsqrtgam * T4EMUU[mu][nu] * g4DDdD[mu][nu][
                    i + 1] / 2

    # # Evolution equations for $A_i$ and $\Phi$
    # <a id='step8'></a>
    #
    # ## Step 4.0: Construct the evolution equations for $A_i$ and $[\sqrt{\gamma}\Phi]$
    # $$\label{step8}$$
    #
    # \[Back to [top](#top)\]
    #
    # We will also need to evolve the vector potential $A_i$. This evolution is given as eq. 17 in the [$\texttt{GiRaFFE}$](https://arxiv.org/pdf/1704.00599.pdf) paper:
    # $$\boxed{\partial_t A_i = \epsilon_{ijk} v^j B^k - \partial_i (\underbrace{\alpha \Phi - \beta^j A_j}_{\rm AevolParen}),}$$
    # where $\epsilon_{ijk} = [ijk] \sqrt{\gamma}$ is the antisymmetric Levi-Civita tensor, the drift velocity $v^i = u^i/u^0$, $\gamma$ is the determinant of the three metric, $B^k$ is the magnetic field, $\alpha$ is the lapse, and $\beta$ is the shift.
    # The scalar electric potential $\Phi$ is also evolved by eq. 19:
    # $$\boxed{\partial_t [\sqrt{\gamma} \Phi] = -\partial_j (\underbrace{\alpha\sqrt{\gamma}A^j - \beta^j [\sqrt{\gamma} \Phi]}_{\rm PevolParenU[j]}) - \xi \alpha [\sqrt{\gamma} \Phi],}$$
    # with $\xi$ chosen as a damping factor.
    #
    # ### Step 4.0.a: Construct some useful auxiliary gridfunctions for the other evolution equations
    #
    # After declaring a  some needed quantities, we will also define the parenthetical terms (underbrace above) that we need to take derivatives of. That way, we can take finite-difference derivatives easily. Note that we use $A^j = \gamma^{ij} A_i$, while $A_i$ (with $\Phi$) is technically a four-vector; this is justified, however, since $n_\mu A^\mu = 0$, where $n_\mu$ is a normal to the hypersurface, $A^0=0$ (according to Sec. II, subsection C of [this paper](https://arxiv.org/pdf/1110.4633.pdf)).

    # Step 4.0: Construct the evolution equations for A_i and sqrt(gamma)Phi
    # Step 4.0.a: Construct some useful auxiliary gridfunctions for the other evolution equations
    xi = par.Cparameters(
        "REAL", thismodule, "xi", 0.1
    )  # The (dimensionful) Lorenz damping factor. Recommendation: set to ~1.5/max(delta t).

    # Define sqrt(gamma)Phi as psi6Phi
    psi6Phi = gri.register_gridfunctions("EVOL", "psi6Phi")
    Phi = psi6Phi / sp.sqrt(gammadet)

    # We'll define a few extra gridfunctions to avoid complicated derivatives
    global AevolParen, PevolParenU
    AevolParen = gri.register_gridfunctions("AUX", "AevolParen")
    PevolParenU = ixp.register_gridfunctions_for_single_rank1(
        "AUX", "PevolParenU")

    # {\rm AevolParen} = \alpha \Phi - \beta^j A_j
    AevolParen = alpha * Phi
    for j in range(DIM):
        AevolParen += -betaU[j] * AD[j]

    # {\rm PevolParenU[j]} = \alpha\sqrt{\gamma} \gamma^{ij} A_i - \beta^j [\sqrt{\gamma} \Phi]
    for j in range(DIM):
        PevolParenU[j] = -betaU[j] * psi6Phi
        for i in range(DIM):
            PevolParenU[j] += alpha * sp.sqrt(gammadet) * gammaUU[i][j] * AD[i]

    AevolParen_dD = ixp.declarerank1("AevolParen_dD")
    PevolParenU_dD = ixp.declarerank2("PevolParenU_dD", "nosym")

    # ### Step 4.0.b: Construct the actual evolution equations for $A_i$ and $[\sqrt{\gamma}\Phi]$
    #
    # Now to set the evolution equations ([eqs. 17 and 19](https://arxiv.org/pdf/1704.00599.pdf)), recalling that the drift velocity $v^i = u^i/u^0$:
    # \begin{align}
    # \partial_t A_i &= \epsilon_{ijk} v^j B^k - \partial_i (\alpha \Phi - \beta^j A_j) \\
    #                &= \epsilon_{ijk} \frac{u^j}{u^0} B^k - {\rm AevolParen\_dD[i]} \\
    # \partial_t [\sqrt{\gamma} \Phi] &= -\partial_j \left(\left(\alpha\sqrt{\gamma}\right)A^j - \beta^j [\sqrt{\gamma} \Phi]\right) - \xi \alpha [\sqrt{\gamma} \Phi] \\
    #                                 &= -{\rm PevolParenU\_dD[j][j]} - \xi \alpha [\sqrt{\gamma} \Phi]. \\
    # \end{align}

    # Step 4.0.b: Construct the actual evolution equations for A_i and sqrt(gamma)Phi
    global A_rhsD, psi6Phi_rhs
    A_rhsD = ixp.zerorank1()
    psi6Phi_rhs = sp.sympify(0)

    for i in range(DIM):
        A_rhsD[i] = -AevolParen_dD[i]
        for j in range(DIM):
            for k in range(DIM):
                A_rhsD[i] += LeviCivitaTensorDDD[i][j][k] * (
                    uU[j] / u4upperZero) * BU[k]

    psi6Phi_rhs = -xi * alpha * psi6Phi
    for j in range(DIM):
        psi6Phi_rhs += -PevolParenU_dD[j][j]
Beispiel #11
0
def stress_energy_source_terms_ito_T4UU_and_ADM_or_BSSN_metricvars(
        inputvars, custom_T4UU=None):
    # Step 1: Check if rfm.reference_metric() already called. If not, BSSN
    #         quantities are not yet defined, so cannot proceed!
    if rfm.have_already_called_reference_metric_function == False:
        print(
            "BSSN_source_terms_ito_T4UU(): Must call reference_metric() first!"
        )
        sys.exit(1)

    # Step 2.a: Define gamma4DD[mu][nu] = g_{mu nu} + n_{mu} n_{nu}
    alpha = sp.symbols("alpha", real=True)
    zero = sp.sympify(0)
    n4D = [-alpha, zero, zero, zero]
    AB4m.g4DD_ito_BSSN_or_ADM(inputvars)

    gamma4DD = ixp.zerorank2(DIM=4)
    for mu in range(4):
        for nu in range(4):
            gamma4DD[mu][nu] = AB4m.g4DD[mu][nu] + n4D[mu] * n4D[nu]

    # Step 2.b: If expression for components of T4UU not given, declare T4UU here
    if custom_T4UU == None:
        T4UU = ixp.declarerank2("T4UU", "sym01", DIM=4)
    else:
        T4UU = custom_T4UU

    # Step 2.c: Define BSSN source terms
    global SDD, SD, S, rho
    # Step 2.c.i: S_{ij} = gamma_{i mu} gamma_{j nu} T^{mu nu}
    SDD = ixp.zerorank2()
    for i in range(3):
        for j in range(3):
            for mu in range(4):
                for nu in range(4):
                    SDD[i][j] += gamma4DD[i + 1][mu] * gamma4DD[
                        j + 1][nu] * T4UU[mu][nu]
    # Step 2.c.ii: S_{i} = -gamma_{i mu} n_{nu} T^{mu nu}
    SD = ixp.zerorank1()
    for i in range(3):
        for mu in range(4):
            for nu in range(4):
                SD[i] += -gamma4DD[i + 1][mu] * n4D[nu] * T4UU[mu][nu]
    # Step 2.c.iii: S = gamma^{ij} S_{ij}
    if inputvars == "ADM":
        gammaDD = ixp.declarerank2("gammaDD", "sym01")
        gammaUU, dummydet = ixp.symm_matrix_inverter3x3(gammaDD)  # Set gammaUU
    elif inputvars == "BSSN":
        import BSSN.ADM_in_terms_of_BSSN as AitoB  # NRPy+: ADM quantities in terms of BSSN quantities
        AitoB.ADM_in_terms_of_BSSN()
        gammaUU = AitoB.gammaUU

    S = zero
    for i in range(3):
        for j in range(3):
            S += gammaUU[i][j] * SDD[i][j]
    # Step 2.c.iv: rho = n_{mu} n_{nu} T^{mu nu}
    rho = zero
    for mu in range(4):
        for nu in range(4):
            rho += n4D[mu] * n4D[nu] * T4UU[mu][nu]
    return SDD, SD, S, rho
Beispiel #12
0
def compute_u0_smallb_Poynting__Cartesian(gammaDD=None,
                                          betaU=None,
                                          alpha=None,
                                          ValenciavU=None,
                                          BU=None):

    if gammaDD is None:  # use "is None" instead of "==None", as the former is more correct.
        # Declare these generically if uninitialized.
        gammaDD = ixp.declarerank2("gammaDD", "sym01")
        betaU = ixp.declarerank1("betaU")
        alpha = sp.sympify("alpha")
        ValenciavU = ixp.declarerank1("ValenciavU")
        BU = ixp.declarerank1("BU")

    # Set spatial dimension = 3
    DIM = 3

    thismodule = __name__

    # Step 1.a: Compute the 4-metric $g_{\mu\nu}$ and its inverse
    #           $g^{\mu\nu}$ from the ADM 3+1 variables, using the
    #           BSSN.ADMBSSN_tofrom_4metric NRPy+ module
    AB4m.g4DD_ito_BSSN_or_ADM("ADM", gammaDD, betaU, alpha)
    g4DD = AB4m.g4DD
    AB4m.g4UU_ito_BSSN_or_ADM("ADM", gammaDD, betaU, alpha)
    g4UU = AB4m.g4UU

    # Step 1.b: Our algorithm for computing $u^0$ is as follows:
    #
    # Let
    # R = gamma_{ij} v^i_{(n)} v^j_{(n)} > 1 - 1 / Gamma_MAX.
    # Then the velocity exceeds the speed limit (set by the
    # maximum Lorentz Gamma, Gamma_MAX), and adjust the
    # 3-velocity $v^i$ as follows:
    #
    # v^i_{(n)} = \sqrt{(1 - 1/Gamma_MAX)/R} * v^i_{(n)}
    #
    # After this rescaling, we are then guaranteed that if
    # R is recomputed, it will be set to its ceiling value
    #  R = 1 - 1 / Gamma_MAX,
    #
    # Then $u^0$ can be safely computed via
    # u^0 = 1 / (alpha \sqrt{1-R}).

    # Step 1.b.i: Compute R = 1 - 1/max(Gamma)
    R = sp.sympify(0)
    for i in range(DIM):
        for j in range(DIM):
            R += gammaDD[i][j] * ValenciavU[i] * ValenciavU[j]

    # Step 1.b.ii: Output C code for computing u^0
    GAMMA_SPEED_LIMIT = par.Cparameters("REAL", thismodule,
                                        "GAMMA_SPEED_LIMIT",
                                        10.0)  # Default value based on
    # IllinoisGRMHD.
    # GiRaFFE default = 2000.0
    Rmax = 1 - 1 / (GAMMA_SPEED_LIMIT * GAMMA_SPEED_LIMIT)

    rescaledValenciavU = ixp.zerorank1()
    for i in range(DIM):
        rescaledValenciavU[i] = ValenciavU[i] * sp.sqrt(Rmax / R)

    rescaledu0 = 1 / (alpha * sp.sqrt(1 - Rmax))
    regularu0 = 1 / (alpha * sp.sqrt(1 - R))

    global computeu0_Cfunction
    computeu0_Cfunction = """
/* Function for computing u^0 from Valencia 3-velocity. */
/* Inputs: ValenciavU[], alpha, gammaDD[][], GAMMA_SPEED_LIMIT (C parameter) */
/* Output: u0=u^0 and velocity-limited ValenciavU[] */\n\n"""

    computeu0_Cfunction += outputC(
        [R, Rmax], ["const double R", "const double Rmax"],
        "returnstring",
        params="includebraces=False,CSE_varprefix=tmpR,outCverbose=False")

    computeu0_Cfunction += "if(R <= Rmax) "
    computeu0_Cfunction += outputC(
        regularu0,
        "u0",
        "returnstring",
        params="includebraces=True,CSE_varprefix=tmpnorescale,outCverbose=False"
    )
    computeu0_Cfunction += " else "
    computeu0_Cfunction += outputC(
        [
            rescaledValenciavU[0], rescaledValenciavU[1],
            rescaledValenciavU[2], rescaledu0
        ], ["ValenciavU0", "ValenciavU1", "ValenciavU2", "u0"],
        "returnstring",
        params="includebraces=True,CSE_varprefix=tmprescale,outCverbose=False")

    # ## Step 1.c: Compute u_j from u^0, the Valencia 3-velocity,
    #    and g_{mu nu}
    # The basic equation is

    # u_j &= g_{\mu j} u^{\mu} \\
    # &= g_{0j} u^0 + g_{ij} u^i \\
    # &= \beta_j u^0 + \gamma_{ij} u^i \\
    # &= \beta_j u^0 + \gamma_{ij} u^0 \left(\alpha v^i_{(n)} - \beta^i\right) \\
    # &= u^0 \left(\beta_j + \gamma_{ij} \left(\alpha v^i_{(n)} - \beta^i\right) \right)\\
    # &= \alpha u^0 \gamma_{ij} v^i_{(n)} \\

    global u0
    u0 = par.Cparameters(
        "REAL", thismodule, "u0", 1e300
    )  # Will be overwritten in C code. Set to crazy value to ensure this.
    global uD
    uD = ixp.zerorank1()
    for i in range(DIM):
        for j in range(DIM):
            uD[j] += alpha * u0 * gammaDD[i][j] * ValenciavU[i]

    # ## Step 1.d: Compute $b^\mu$ from above expressions.

    # \sqrt{4\pi} b^0 = B^0_{\rm (u)} &= \frac{u_j B^j}{\alpha} \\
    # \sqrt{4\pi} b^i = B^i_{\rm (u)} &= \frac{B^i + (u_j B^j) u^i}{\alpha u^0}\\

    # $B^i$ is related to the actual magnetic field evaluated in IllinoisGRMHD, $\tilde{B}^i$ via
    #
    # $$B^i = \frac{\tilde{B}^i}{\gamma},$$
    #
    # where $\gamma$ is the determinant of the spatial 3-metric.
    #
    # Pulling this together, we currently have available as input:
    # + $\tilde{B}^i$
    # + $\gamma$
    # + $u_j$
    # + $u^0$,

    # with the goal of outputting now $b^\mu$ and $b^2$:
    M_PI = par.Cparameters("#define", thismodule, "M_PI", "")

    # uBcontraction = u_i B^i
    global uBcontraction
    uBcontraction = sp.sympify(0)
    for i in range(DIM):
        uBcontraction += uD[i] * BU[i]

    # uU = 3-vector representing u^i = u^0 \left(\alpha v^i_{(n)} - \beta^i\right)
    global uU
    uU = ixp.zerorank1()
    for i in range(DIM):
        uU[i] = u0 * (alpha * ValenciavU[i] - betaU[i])

    global smallb4U
    smallb4U = ixp.zerorank1(DIM=4)
    smallb4U[0] = uBcontraction / (alpha * sp.sqrt(4 * M_PI))
    for i in range(DIM):
        smallb4U[1 + i] = (BU[i] + uBcontraction * uU[i]) / (alpha * u0 *
                                                             sp.sqrt(4 * M_PI))

    # Step 2: Compute the Poynting flux vector S^i
    #
    # The Poynting flux is defined in Eq. 11 of [Kelly *et al*](https://arxiv.org/pdf/1710.02132.pdf):
    # S^i = -\alpha T^i_{\rm EM\ 0} = \alpha\left(b^2 u^i u_0 + \frac{1}{2} b^2 g^i{}_0 - b^i b_0\right)

    # We start by computing
    # g^\mu{}_\delta = g^{\mu\nu} g_{\nu \delta},

    # and then the rest of the Poynting flux vector can be immediately computed from quantities defined above:
    # S^i = \alpha T^i_{\rm EM\ 0} = -\alpha\left(b^2 u^i u_0 + \frac{1}{2} b^2 g^i{}_0 - b^i b_0\right)

    # Step 2.a.i: compute g^\mu_\delta:
    g4UD = ixp.zerorank2(DIM=4)
    for mu in range(4):
        for delta in range(4):
            for nu in range(4):
                g4UD[mu][delta] += g4UU[mu][nu] * g4DD[nu][delta]

    # Step 2.a.ii: compute b_{\mu}
    global smallb4D
    smallb4D = ixp.zerorank1(DIM=4)
    for mu in range(4):
        for nu in range(4):
            smallb4D[mu] += g4DD[mu][nu] * smallb4U[nu]

    # Step 2.a.iii: compute u_0 = g_{mu 0} u^{mu} = g4DD[0][0]*u0 + g4DD[i][0]*uU[i]
    u_0 = g4DD[0][0] * u0
    for i in range(DIM):
        u_0 += g4DD[i + 1][0] * uU[i]

    # Step 2.a.iv: compute b^2, setting b^2 = smallb2etk, as gridfunctions with base names ending in a digit
    #          are forbidden in NRPy+.
    global smallb2etk
    smallb2etk = sp.sympify(0)
    for mu in range(4):
        smallb2etk += smallb4U[mu] * smallb4D[mu]

    # Step 2.a.v: compute S^i
    global PoynSU
    PoynSU = ixp.zerorank1()
    for i in range(DIM):
        PoynSU[i] = -alpha * (smallb2etk * uU[i] * u_0 +
                              sp.Rational(1, 2) * smallb2etk * g4UD[i + 1][0] -
                              smallb4U[i + 1] * smallb4D[0])
def GiRaFFE_Higher_Order_v2():
    #Step 1.0: Set the spatial dimension parameter to 3.
    par.set_parval_from_str("grid::DIM", 3)
    DIM = par.parval_from_str("grid::DIM")

    # Step 1.1: Set the finite differencing order to 4.
    #par.set_parval_from_str("finite_difference::FD_CENTDERIVS_ORDER", 4)

    thismodule = "GiRaFFE_NRPy"

    # M_PI will allow the C code to substitute the correct value
    M_PI = par.Cparameters("#define",thismodule,"M_PI","")
    # ADMBase defines the 4-metric in terms of the 3+1 spacetime metric quantities gamma_{ij}, beta^i, and alpha
    gammaDD = ixp.register_gridfunctions_for_single_rank2("AUX","gammaDD", "sym01",DIM=3)
    betaU   = ixp.register_gridfunctions_for_single_rank1("AUX","betaU",DIM=3)
    alpha   = gri.register_gridfunctions("AUX","alpha")
    # GiRaFFE uses the Valencia 3-velocity and A_i, which are defined in the initial data module(GiRaFFEfood)
    ValenciavU = ixp.register_gridfunctions_for_single_rank1("AUX","ValenciavU",DIM=3)
    AD = ixp.register_gridfunctions_for_single_rank1("EVOL","AD",DIM=3)
    # B^i must be computed at each timestep within GiRaFFE so that the Valencia 3-velocity can be evaluated
    BU = ixp.register_gridfunctions_for_single_rank1("AUX","BU",DIM=3)


    # <a id='step3'></a>
    # 
    # ## Step 1.2: Build the four metric $g_{\mu\nu}$, its inverse $g^{\mu\nu}$ and spatial derivatives $g_{\mu\nu,i}$ from ADM 3+1 quantities $\gamma_{ij}$, $\beta^i$, and $\alpha$ \[Back to [top](#top)\]
    # 
    # Notice that the time evolution equation for $\tilde{S}_i$
    # $$
    # \partial_t \tilde{S}_i = - \partial_j \left( \alpha \sqrt{\gamma} T^j_{{\rm EM} i} \right) + \frac{1}{2} \alpha \sqrt{\gamma} T^{\mu \nu}_{\rm EM} \partial_i g_{\mu \nu}
    # $$
    # contains $\partial_i g_{\mu \nu} = g_{\mu\nu,i}$. We will now focus on evaluating this term.
    # 
    # The four-metric $g_{\mu\nu}$ is related to the three-metric $\gamma_{ij}$, index-lowered shift $\beta_i$, and lapse $\alpha$ by  
    # $$
    # g_{\mu\nu} = \begin{pmatrix} 
    # -\alpha^2 + \beta^k \beta_k & \beta_j \\
    # \beta_i & \gamma_{ij}
    # \end{pmatrix}.
    # $$
    # This tensor and its inverse have already been built by the u0_smallb_Poynting__Cartesian.py module ([documented here](Tutorial-u0_smallb_Poynting-Cartesian.ipynb)), so we can simply load the module and import the variables.
    # $$\label{step3}$$


    # Step 1.2: import u0_smallb_Poynting__Cartesian.py to set 
    #           the four metric and its inverse. This module also sets b^2 and u^0.
    import u0_smallb_Poynting__Cartesian.u0_smallb_Poynting__Cartesian as u0b
    u0b.compute_u0_smallb_Poynting__Cartesian(gammaDD,betaU,alpha,ValenciavU,BU)

    betaD = ixp.zerorank1()
    for i in range(DIM):
        for j in range(DIM):
            betaD[i] += gammaDD[i][j] * betaU[j]
    # Error check: fixed = to +=

    # We will now pull in the four metric and its inverse.
    import BSSN.ADMBSSN_tofrom_4metric as AB4m # NRPy+: ADM/BSSN <-> 4-metric conversions
    AB4m.g4DD_ito_BSSN_or_ADM("ADM")
    g4DD = AB4m.g4DD
    AB4m.g4UU_ito_BSSN_or_ADM("ADM")
    g4UU = AB4m.g4UU


    # Next we compute spatial derivatives of the metric, $\partial_i g_{\mu\nu} = g_{\mu\nu,i}$, written in terms of the three-metric, shift, and lapse. Simply taking the derivative of the expression for $g_{\mu\nu}$ above, we find
    # $$
    # g_{\mu\nu,l} = \begin{pmatrix} 
    # -2\alpha \alpha_{,l} + \beta^k_{\ ,l} \beta_k + \beta^k \beta_{k,l} & \beta_{j,l} \\
    # \beta_{i,l} & \gamma_{ij,l}
    # \end{pmatrix}.
    # $$
    # 
    # Notice the derivatives of the shift vector with its indexed lowered, $\beta_{i,j} = \partial_j \beta_i$. This can be easily computed in terms of the given ADMBase quantities $\beta^i$ and $\gamma_{ij}$ via:
    # \begin{align}
    # \beta_{i,j} &= \partial_j \beta_i \\
    #             &= \partial_j (\gamma_{ik} \beta^k) \\
    #             &= \gamma_{ik} \partial_j\beta^k + \beta^k \partial_j \gamma_{ik} \\
    # \beta_{i,j} &= \gamma_{ik} \beta^k_{\ ,j} + \beta^k \gamma_{ik,j}.
    # \end{align}
    # 
    # Since this expression mixes Greek and Latin indices, we will declare this as a 4 dimensional quantity, but only set the three spatial components of its last index (that is, leaving $l=0$ unset).
    # 
    # So, we will first set 
    # $$ g_{00,l} = \underbrace{-2\alpha \alpha_{,l}}_{\rm Term\ 1} + \underbrace{\beta^k_{\ ,l} \beta_k}_{\rm Term\ 2} + \underbrace{\beta^k \beta_{k,l}}_{\rm Term\ 3} $$


    # Step 1.2, cont'd: Build spatial derivatives of the four metric
    # Step 1.2.a: Declare derivatives of grid functions. These will be handled by FD_outputC
    alpha_dD   = ixp.declarerank1("alpha_dD")
    betaU_dD   = ixp.declarerank2("betaU_dD","nosym")
    gammaDD_dD = ixp.declarerank3("gammaDD_dD","sym01")

    # Step 1.2.b: These derivatives will be constructed analytically.
    betaDdD    = ixp.zerorank2()
    g4DDdD     = ixp.zerorank3(DIM=4)

    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                # \gamma_{ik} \beta^k_{,j} + \beta^k \gamma_{ik,j}
                betaDdD[i][j] += gammaDD[i][k] * betaU_dD[k][j] + betaU[k] * gammaDD_dD[i][k][j]
    #Error check: changed = to += above

    # Step 1.2.c: Set the 00 components
    # Step 1.2.c.i: Term 1: -2\alpha \alpha_{,l}
    for l in range(DIM):
        g4DDdD[0][0][l+1] = -2*alpha*alpha_dD[l]

    # Step 1.2.c.ii: Term 2: \beta^k_{\ ,l} \beta_k
    for l in range(DIM):
        for k in range(DIM):
            g4DDdD[0][0][l+1] += betaU_dD[k][l] * betaD[k]

    # Step 1.2.c.iii: Term 3: \beta^k \beta_{k,l}
    for l in range(DIM):
        for k in range(DIM):
            g4DDdD[0][0][l+1] += betaU[k] * betaDdD[k][l]


    # Now we will contruct the other components of $g_{\mu\nu,l}$. We will first construct 
    # $$ g_{i0,l} = g_{0i,l} = \beta_{i,l}, $$
    # then
    # $$ g_{ij,l} = \gamma_{ij,l} $$


    # Step 1.2.d: Set the i0 and 0j components
    for l in range(DIM):
        for i in range(DIM):
            # \beta_{i,l}
            g4DDdD[i+1][0][l+1] = g4DDdD[0][i+1][l+1] = betaDdD[i][l]

    #Step 1.2.e: Set the ij components
    for l in range(DIM):
        for i in range(DIM):
            for j in range(DIM):
                # \gamma_{ij,l}
                g4DDdD[i+1][j+1][l+1] = gammaDD_dD[i][j][l]


    # <a id='step4'></a>
    # 
    # # $T^{\mu\nu}_{\rm EM}$ and its derivatives
    # 
    # Now that the metric and its derivatives are out of the way, let's return to the evolution equation for $\tilde{S}_i$,
    # $$
    # \partial_t \tilde{S}_i = - \partial_j \left( \alpha \sqrt{\gamma} T^j_{{\rm EM} i} \right) + \frac{1}{2} \alpha \sqrt{\gamma} T^{\mu \nu}_{\rm EM} \partial_i g_{\mu \nu}.
    # $$ 
    # We turn our focus now to $T^j_{{\rm EM} i}$ and its derivatives. To this end, we start by computing $T^{\mu \nu}_{\rm EM}$ (from eq. 27 of [Paschalidis & Shapiro's paper on their GRFFE code](https://arxiv.org/pdf/1310.3274.pdf)):
    # 
    # $$\boxed{T^{\mu \nu}_{\rm EM} = b^2 u^{\mu} u^{\nu} + \frac{b^2}{2} g^{\mu \nu} - b^{\mu} b^{\nu}.}$$
    # 
    # Notice that $T^{\mu\nu}_{\rm EM}$ is written in terms of
    # 
    # * $b^\mu$, the 4-component magnetic field vector, related to the comoving magnetic field vector $B^i_{(u)}$
    # * $u^\mu$, the 4-velocity
    # * $g^{\mu \nu}$, the inverse 4-metric
    # 
    # However, $\texttt{GiRaFFE}$ has access to only the following quantities, requiring in the following sections that we write the above quantities in terms of the following ones:
    # 
    # * $\gamma_{ij}$, the 3-metric
    # * $\alpha$, the lapse
    # * $\beta^i$, the shift
    # * $A_i$, the vector potential
    # * $B^i$, the magnetic field (we assume only in the grid interior, not the ghost zones)
    # * $\left[\sqrt{\gamma}\Phi\right]$, the zero-component of the vector potential $A_\mu$, times the square root of the determinant of the 3-metric
    # * $v_{(n)}^i$, the Valencia 3-velocity
    # * $u^0$, the zero-component of the 4-velocity
    # 
    # ## Step 2.0: $u^i$ and $b^i$ and related quantities \[Back to [top](#top)\]
    # 
    # We begin by importing what we can from u0_smallb_Poynting__Cartesian.py. We will need the four-velocity $u^\mu$, which is related to the Valencia 3-velocity $v^i_{(n)}$ used directly by $\texttt{GiRaFFE}$ (see also [Duez, et al, eqs. 53 and 56](https://arxiv.org/pdf/astro-ph/0503420.pdf))
    # \begin{align}
    # u^i &= u^0 (\alpha v^i_{(n)} - \beta^i), \\
    # u_j &= \alpha u^0 \gamma_{ij} v^i_{(n)},
    # \end{align}
    # where $v^i_{(n)}$ is the Valencia three-velocity. These have already been constructed in terms of the Valencia 3-velocity and other 3+1 ADM quantities by the u0_smallb_Poynting__Cartesian.py module, so we can simply import these variables:
    # $$\label{step4}$$


    # Step 2.0: u^i, b^i, and related quantities
    # Step 2.0.a: import the four-velocity, as written in terms of the Valencia 3-velocity
    uD = ixp.zerorank1()
    uU = ixp.zerorank1()
    u4upperZero = gri.register_gridfunctions("AUX","u4upperZero")

    for i in range(DIM):
        uD[i] = u0b.uD[i].subs(u0b.u0,u4upperZero)
        uU[i] = u0b.uU[i].subs(u0b.u0,u4upperZero)


    # We also need the magnetic field 4-vector $b^{\mu}$, which is related to the magnetic field by [eqs. 23, 24, and 31 in Duez, et al](https://arxiv.org/pdf/astro-ph/0503420.pdf):
    # \begin{align}
    # b^0 &= \frac{1}{\sqrt{4\pi}} B^0_{\rm (u)} = \frac{u_j B^j}{\sqrt{4\pi}\alpha}, \\
    # b^i &= \frac{1}{\sqrt{4\pi}} B^i_{\rm (u)} = \frac{B^i + (u_j B^j) u^i}{\sqrt{4\pi}\alpha u^0}, \\
    # \end{align}
    # where $B^i$ is the variable tracked by the HydroBase thorn in the Einstein Toolkit. Again, these have already been built by the u0_smallb_Poynting__Cartesian.py module, so we can simply import the variables.


    # Step 2.0.b: import the small b terms
    smallb4U = ixp.zerorank1(DIM=4)
    smallb4D = ixp.zerorank1(DIM=4)
    for mu in range(4):
        smallb4U[mu] = u0b.smallb4U[mu].subs(u0b.u0,u4upperZero)
        smallb4D[mu] = u0b.smallb4D[mu].subs(u0b.u0,u4upperZero)

    smallb2 = u0b.smallb2etk.subs(u0b.u0,u4upperZero)


    # <a id='step5'></a>
    # 
    # ## Step 2.1: Construct all components of the electromagnetic stress-energy tensor $T^{\mu \nu}_{\rm EM}$ \[Back to [top](#top)\]
    # 
    # We now have all the pieces to calculate the stress-energy tensor,
    # $$T^{\mu \nu}_{\rm EM} = \underbrace{b^2 u^{\mu} u^{\nu}}_{\rm Term\ 1} + 
    # \underbrace{\frac{b^2}{2} g^{\mu \nu}}_{\rm Term\ 2}
    # - \underbrace{b^{\mu} b^{\nu}}_{\rm Term\ 3}.$$
    # Because $u^0$ is a separate variable, we could build the $00$ component separately, then the $\mu0$ and $0\nu$ components, and finally the $\mu\nu$ components. Alternatively, for clarity, we could create a temporary variable $u^\mu=\left( u^0, u^i \right)$
    # $$\label{step5}$$


    # Step 2.1: Construct the electromagnetic stress-energy tensor
    # Step 2.1.a: Set up the four-velocity vector
    u4U = ixp.zerorank1(DIM=4)
    u4U[0] = u4upperZero
    for i in range(DIM):
        u4U[i+1] = uU[i]

    # Step 2.1.b: Build T4EMUU itself
    T4EMUU = ixp.zerorank2(DIM=4)
    for mu in range(4):
        for nu in range(4):
            # Term 1: b^2 u^{\mu} u^{\nu}
            T4EMUU[mu][nu] = smallb2*u4U[mu]*u4U[nu]

    for mu in range(4):
        for nu in range(4):
            # Term 2: b^2 / 2 g^{\mu \nu}
            T4EMUU[mu][nu] += smallb2*g4UU[mu][nu]/2

    for mu in range(4):
        for nu in range(4):
            # Term 3: -b^{\mu} b^{\nu}
            T4EMUU[mu][nu] += -smallb4U[mu]*smallb4U[nu]


    # 
    # # Evolution equation for $\tilde{S}_i$
    # <a id='step7'></a>
    # 
    # ## Step 3.0: Construct the evolution equation for $\tilde{S}_i$ \[Back to [top](#top)\]
    # 
    # Finally, we will return our attention to the time evolution equation (from eq. 13 of the [original paper](https://arxiv.org/pdf/1704.00599.pdf)),
    # \begin{align}
    # \partial_t \tilde{S}_i &= - \partial_j \underbrace{\left( \alpha \sqrt{\gamma} T^j_{{\rm EM} i} \right)}_{\rm SevolParenUD} + \frac{1}{2} \alpha \sqrt{\gamma} T^{\mu \nu}_{\rm EM} \partial_i g_{\mu \nu} \\
    #                        &= - \partial_j{\rm SevolParenUD[i][j]} + \frac{1}{2} \alpha \sqrt{\gamma} T^{\mu \nu}_{\rm EM} \partial_i g_{\mu \nu} .
    # \end{align}
    # We will first take construct ${\rm SevolParenUD}$, then use its derivatives to construct the evolution equation. Note that 
    # \begin{align}
    # {\rm SevolParenUD[i][j]} &= \alpha \sqrt{\gamma} T^j_{{\rm EM} i} \\
    #                              &= \alpha \sqrt{\gamma} g_{\mu i} T^{\mu j}_{\rm EM}.
    # \end{align}
    # $$\label{step7}$$


    # Step 3.0: Construct the evolution equation for \tilde{S}_i
    # Here, we set up the necessary machinery to take FD derivatives of alpha * sqrt(gamma)
    global gammaUU,gammadet
    gammaUU = ixp.register_gridfunctions_for_single_rank2("AUX","gammaUU","sym01")
    gammadet = gri.register_gridfunctions("AUX","gammadet")
    gammaUU, gammadet = ixp.symm_matrix_inverter3x3(gammaDD)

    alpsqrtgam = alpha*sp.sqrt(gammadet)

    global SevolParenUD
    SevolParenUD = ixp.register_gridfunctions_for_single_rank2("AUX","SevolParenUD","nosym")
    SevolParenUD = ixp.zerorank2()

    for i in range(DIM):
        for j in range (DIM):
            for mu in range(4):
                SevolParenUD[j][i] += alpsqrtgam * g4DD[mu][i+1] * T4EMUU[mu][j+1]

    SevolParenUD_dD = ixp.declarerank3("SevolParenUD_dD","nosym")

    global Stilde_rhsD
    Stilde_rhsD = ixp.zerorank1()
    # The first term: \alpha \sqrt{\gamma} \partial_j T^j_{{\rm EM} i}
    for i in range(DIM):
        for j in range(DIM):
            Stilde_rhsD[i] += -SevolParenUD_dD[j][i][j]

    # The second term: \alpha \sqrt{\gamma} T^{\mu \nu}_{\rm EM} \partial_i g_{\mu \nu} / 2
    for i in range(DIM):
        for mu in range(4):
            for nu in range(4):
                Stilde_rhsD[i] += alpsqrtgam * T4EMUU[mu][nu] * g4DDdD[mu][nu][i+1] / 2


    # # Evolution equations for $A_i$ and $\Phi$
    # <a id='step8'></a>
    # 
    # ## Step 4.0: Construct the evolution equations for $A_i$ and $[\sqrt{\gamma}\Phi]$ \[Back to [top](#top)\]
    # 
    # We will also need to evolve the vector potential $A_i$. This evolution is given as eq. 17 in the [$\texttt{GiRaFFE}$](https://arxiv.org/pdf/1704.00599.pdf) paper:
    # $$\boxed{\partial_t A_i = \epsilon_{ijk} v^j B^k - \partial_i (\underbrace{\alpha \Phi - \beta^j A_j}_{\rm AevolParen}),}$$
    # where $\epsilon_{ijk} = [ijk] \sqrt{\gamma}$ is the antisymmetric Levi-Civita tensor, the drift velocity $v^i = u^i/u^0$, $\gamma$ is the determinant of the three metric, $B^k$ is the magnetic field, $\alpha$ is the lapse, and $\beta$ is the shift.
    # The scalar electric potential $\Phi$ is also evolved by eq. 19:
    # $$\boxed{\partial_t [\sqrt{\gamma} \Phi] = -\partial_j (\underbrace{\alpha\sqrt{\gamma} \gamma^{ij} A_i - \beta^j [\sqrt{\gamma} \Phi]}_{\rm PevolParenU[j]}) - \xi \alpha [\sqrt{\gamma} \Phi],}$$
    # with $\xi$ chosen as a damping factor. 
    # 
    # ### Step 4.0.a: Construct some useful auxiliary gridfunctions for the other evolution equations
    # 
    # After declaring a  some needed quantities, we will also define the parenthetical terms (underbrace above) that we need to take derivatives of. That way, we can take finite-difference derivatives easily. Note that the above equations incorporate the fact that $\gamma^{ij}$ is the appropriate raising operator for $A_i$: $A^j = \gamma^{ij} A_i$. This is correct since $n_\mu A^\mu = 0$, where $n_\mu$ is a normal to the hypersurface, so $A^0=0$ (according to Sec. II, subsection C of [the "Improved EM gauge condition" paper of Etienne *et al*](https://arxiv.org/pdf/1110.4633.pdf)).
    # $$\label{step8}$$


    # Step 4.0: Construct the evolution equations for A_i and sqrt(gamma)Phi
    # Step 4.0.a: Construct some useful auxiliary gridfunctions for the other evolution equations
    xi = par.Cparameters("REAL",thismodule,"xi", 0.1) # The (dimensionful) Lorenz damping factor. Recommendation: set to ~1.5/max(delta t).

    # Define sqrt(gamma)Phi as psi6Phi
    psi6Phi = gri.register_gridfunctions("EVOL","psi6Phi")
    Phi = psi6Phi / sp.sqrt(gammadet)

    # We'll define a few extra gridfunctions to avoid complicated derivatives
    global AevolParen,PevolParenU
    AevolParen  = gri.register_gridfunctions("AUX","AevolParen")
    PevolParenU = ixp.register_gridfunctions_for_single_rank1("AUX","PevolParenU")

    # {\rm AevolParen} = \alpha \Phi - \beta^j A_j
    AevolParen = alpha*Phi
    for j in range(DIM):
        AevolParen    += -betaU[j] * AD[j]

    # {\rm PevolParenU[j]} = \alpha\sqrt{\gamma} \gamma^{ij} A_i - \beta^j [\sqrt{\gamma} \Phi]
    for j in range(DIM):
        PevolParenU[j] = -betaU[j] * psi6Phi
        for i in range(DIM):
            PevolParenU[j] += alpsqrtgam * gammaUU[i][j] * AD[i]

    AevolParen_dD  = ixp.declarerank1("AevolParen_dD")
    PevolParenU_dD = ixp.declarerank2("PevolParenU_dD","nosym")


    # ### Step 4.0.b: Complete the construction of the evolution equations for $A_i$ and $[\sqrt{\gamma}\Phi]$
    # 
    # Now to set the evolution equations ([eqs. 17 and 19](https://arxiv.org/pdf/1704.00599.pdf)), recalling that the drift velocity $v^i = u^i/u^0$:
    # \begin{align}
    # \partial_t A_i &= \epsilon_{ijk} v^j B^k - \partial_i (\alpha \Phi - \beta^j A_j) \\
    #                &= \epsilon_{ijk} \frac{u^j}{u^0} B^k - {\rm AevolParen\_dD[i]} \\
    # \partial_t [\sqrt{\gamma} \Phi] &= -\partial_j \left(\left(\alpha\sqrt{\gamma}\right)A^j - \beta^j [\sqrt{\gamma} \Phi]\right) - \xi \alpha [\sqrt{\gamma} \Phi] \\
    #                                 &= -{\rm PevolParenU\_dD[j][j]} - \xi \alpha [\sqrt{\gamma} \Phi]. \\
    # \end{align}


    # Step 4.0.b: Construct the actual evolution equations for A_i and sqrt(gamma)Phi
    global A_rhsD,psi6Phi_rhs
    A_rhsD = ixp.zerorank1()
    psi6Phi_rhs = sp.sympify(0)

    # We already have a handy function to define the Levi-Civita symbol in WeylScalars
    import WeylScal4NRPy.WeylScalars_Cartesian as weyl
    # Initialize the Levi-Civita tensor by setting it equal to the Levi-Civita symbol
    LeviCivitaSymbolDDD = weyl.define_LeviCivitaSymbol_rank3()
    LeviCivitaTensorDDD = ixp.zerorank3()
    #LeviCivitaTensorUUU = ixp.zerorank3()

    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                LeviCivitaTensorDDD[i][j][k] = LeviCivitaSymbolDDD[i][j][k] * sp.sqrt(gammadet)
                #LeviCivitaTensorUUU[i][j][k] = LeviCivitaSymbolDDD[i][j][k] / sp.sqrt(gammadet)

    for i in range(DIM):
        A_rhsD[i] = -AevolParen_dD[i]
        for j in range(DIM):
            for k in range(DIM):
                A_rhsD[i] += LeviCivitaTensorDDD[i][j][k]*(uU[j]/u4upperZero)*BU[k]

    psi6Phi_rhs = -xi*alpha*psi6Phi
    for j in range(DIM):
        psi6Phi_rhs += -PevolParenU_dD[j][j]
Beispiel #14
0
def generate_memory_access_code(gammaDD, betaU, alpha):
    # There are several pieces of C code that we will write ourselves because we need to do things
    # a little bit outside of what NRPy+ is built for.
    # First, we will write general memory access. We will read in values from memory at a given point
    # for each quantity we care about.
    global general_access
    general_access = ""
    for var in [
            "GAMMADD00", "GAMMADD01", "GAMMADD02", "GAMMADD11", "GAMMADD12",
            "GAMMADD22", "BETAU0", "BETAU1", "BETAU2", "ALPHA", "BU0", "BU1",
            "BU2", "VALENCIAVU0", "VALENCIAVU1", "VALENCIAVU2"
    ]:
        lhsvar = var.lower().replace("dd", "DD").replace("u", "U").replace(
            "bU", "BU").replace("valencia", "Valencia")
        # e.g.,
        # const REAL gammaDD00dD0 = auxevol_gfs[IDX4S(GAMMA_FACEDD00GF,i0,i1,i2)];
        general_access += "const REAL " + lhsvar + " = auxevol_gfs[IDX4S(" + var + "GF,i0,i1,i2)];\n"

    # This quick function returns a nearby point for memory access. We need this because derivatives are not local operations.
    def idxp1(dirn):
        if dirn == 0:
            return "i0+1,i1,i2"
        if dirn == 1:
            return "i0,i1+1,i2"
        if dirn == 2:
            return "i0,i1,i2+1"

    # Next we evaluate needed derivatives of the metric, based on their values at cell faces
    global metric_deriv_access
    metric_deriv_access = []
    #     for dirn in range(3):
    #         metric_deriv_access.append("")
    #         for var in ["GAMMA_FACEDDdD00", "GAMMA_FACEDDdD01", "GAMMA_FACEDDdD02",
    #                     "GAMMA_FACEDDdD11", "GAMMA_FACEDDdD12", "GAMMA_FACEDDdD22",
    #                     "BETA_FACEUdD0", "BETA_FACEUdD1", "BETA_FACEUdD2","ALPHA_FACEdD"]:
    #             lhsvar = var.lower().replace("dddd","DDdD").replace("udd","UdD").replace("dd","dD").replace("u","U").replace("_face","")
    #             rhsvar = var.replace("dD","")
    #             # e.g.,
    #             # const REAL gammaDDdD000 = (auxevol_gfs[IDX4S(GAMMA_FACEDD00GF,i0+1,i1,i2)]-auxevol_gfs[IDX4S(GAMMA_FACEDD00GF,i0,i1,i2)])/dxx0;
    #             metric_deriv_access[dirn] += "const REAL "+lhsvar+str(dirn)+" = (auxevol_gfs[IDX4S("+rhsvar+"GF,"+idxp1(dirn)+")]-auxevol_gfs[IDX4S("+rhsvar+"GF,i0,i1,i2)])/dxx"+str(dirn)+";\n"
    #         metric_deriv_access[dirn] += "REAL Stilde_rhsD"+str(dirn)+";\n"
    # For this workaround, instead of taking the derivative of the metric components and then building the
    # four-metric, we build the four-metric and then take derivatives. Do this at i and i+1
    for dirn in range(3):
        metric_deriv_access.append("")
        for var in [
                "GAMMA_FACEDD00", "GAMMA_FACEDD01", "GAMMA_FACEDD02",
                "GAMMA_FACEDD11", "GAMMA_FACEDD12", "GAMMA_FACEDD22",
                "BETA_FACEU0", "BETA_FACEU1", "BETA_FACEU2", "ALPHA_FACE"
        ]:
            lhsvar = var.lower().replace("dd", "DD").replace("u", "U")
            rhsvar = var
            # e.g.,
            # const REAL gammaDD00 = auxevol_gfs[IDX4S(GAMMA_FACEDD00GF,i0,i1,i2)];
            metric_deriv_access[
                dirn] += "const REAL " + lhsvar + " = auxevol_gfs[IDX4S(" + rhsvar + "GF,i0,i1,i2)];\n"
        # Read in at the next grid point
        for var in [
                "GAMMA_FACEDD00", "GAMMA_FACEDD01", "GAMMA_FACEDD02",
                "GAMMA_FACEDD11", "GAMMA_FACEDD12", "GAMMA_FACEDD22",
                "BETA_FACEU0", "BETA_FACEU1", "BETA_FACEU2", "ALPHA_FACE"
        ]:
            lhsvar = var.lower().replace("dd", "DD").replace("u", "U").replace(
                "_face", "_facep1")
            rhsvar = var
            # e.g.,
            # const REAL gammaDD00 = auxevol_gfs[IDX4S(GAMMA_FACEDD00GF,i0+1,i1,i2)];
            metric_deriv_access[
                dirn] += "const REAL " + lhsvar + " = auxevol_gfs[IDX4S(" + rhsvar + "GF," + idxp1(
                    dirn) + ")];\n"
        metric_deriv_access[dirn] += "REAL Stilde_rhsD" + str(dirn) + ";\n"
    import BSSN.ADMBSSN_tofrom_4metric as AB4m
    AB4m.g4DD_ito_BSSN_or_ADM("ADM", gammaDD, betaU, alpha)
    four_metric_vars = [
        AB4m.g4DD[0][0], AB4m.g4DD[0][1], AB4m.g4DD[0][2], AB4m.g4DD[0][3],
        AB4m.g4DD[1][1], AB4m.g4DD[1][2], AB4m.g4DD[1][3], AB4m.g4DD[2][2],
        AB4m.g4DD[2][3], AB4m.g4DD[3][3]
    ]
    four_metric_names = [
        "g4DD00", "g4DD01", "g4DD02", "g4DD03", "g4DD11", "g4DD12", "g4DD13",
        "g4DD22", "g4DD23", "g4DD33"
    ]
    global four_metric_C, four_metric_Cp1
    four_metric_C = outputC(four_metric_vars,
                            four_metric_names,
                            "returnstring",
                            params="outCverbose=False,CSE_sorting=none")
    for ii in range(len(four_metric_names)):
        four_metric_names[ii] += "p1"
    four_metric_Cp1 = outputC(four_metric_vars,
                              four_metric_names,
                              "returnstring",
                              params="outCverbose=False,CSE_sorting=none")
    four_metric_C = four_metric_C.replace("gamma", "gamma_face").replace(
        "beta",
        "beta_face").replace("alpha", "alpha_face").replace("{", "").replace(
            "}", "").replace("g4",
                             "const REAL g4").replace("tmp_", "tmp_deriv")
    four_metric_Cp1 = four_metric_Cp1.replace("gamma", "gamma_facep1").replace(
        "beta", "beta_facep1").replace("alpha", "alpha_facep1").replace(
            "{", "").replace("}", "").replace("g4", "const REAL g4").replace(
                "tmp_", "tmp_derivp")

    global four_metric_deriv
    four_metric_deriv = []
    for dirn in range(3):
        four_metric_deriv.append("")
        for var in [
                "g4DDdD00", "g4DDdD01", "g4DDdD02", "g4DDdD03", "g4DDdD11",
                "g4DDdD12", "g4DDdD13", "g4DDdD22", "g4DDdD23", "g4DDdD33"
        ]:
            lhsvar = var + str(dirn + 1)
            rhsvar = var.replace("dD", "")
            rhsvarp1 = rhsvar + "p1"
            # e.g.,
            # const REAL g44DDdD000 = (g4DD00p1 - g4DD00)/dxx0;
            four_metric_deriv[
                dirn] += "const REAL " + lhsvar + " = (" + rhsvarp1 + " - " + rhsvar + ")/dxx" + str(
                    dirn) + ";\n"

    # This creates the C code that writes to the Stilde_rhs direction specified.
    global write_final_quantity
    write_final_quantity = []
    for dirn in range(3):
        write_final_quantity.append("")
        write_final_quantity[dirn] += "rhs_gfs[IDX4S(STILDED" + str(
            dirn) + "GF,i0,i1,i2)] += Stilde_rhsD" + str(dirn) + ";"