Beispiel #1
0
def statistics_func(raster_folder, raster_filename, output_folder, statistical_functions, statistical_args):
    start_time = datetime.now()
    input_raster = os.path.join(raster_folder, raster_filename)
    hdr_file = ""  # input_raster + ".hdr"        # only used for ENVI stacks
    outname = os.path.join(output_folder, raster_filename)
    if outname.find(".tif") != -1:
        outname = outname[0:len(outname) - 4]

    # arr: full size numpy array 3D XxYxZ 200x300x100
    arr = preprocessing.rio_array(input_raster, hdr_file=hdr_file)

    # activate to get list of dates from .hdr file (.hdr file needs to be specified above)
    # dates = arr[1]

    for i, func in enumerate(statistical_functions):
        # creating results with calling wanted algorithm in parallel_apply_along_axis for quick runtime
        result = apply_along_axis.parallel_apply_along_axis(func1d=func, arr=arr[0], axis=0, cores=mp.cpu_count(),
                                                            **statistical_args[i])

        # selecting dtype based on result
        dtype = type(result[0][0])

        func_name_end = str(func).find(" at")
        func_name_start = 10
        func_name = str(func)[func_name_start:func_name_end]

        # exporting result to new raster
        export_arr.functions_out_array(outname=outname + "_" + func_name + str(i), arr=result, input_file=input_raster,
                                       dtype=dtype)
    # print time to this point
    statistics_time = datetime.now()
    print("breakpoint-time = ", statistics_time - start_time, "Hr:min:sec")
Beispiel #2
0
def filter_func(raster_folder, raster_filename, output_folder, filter_functions, filter_args):
    start_time = datetime.now()
    input_raster = os.path.join(raster_folder, raster_filename)
    hdr_file = ""   # only used for ENVI stacks
    outname = os.path.join(output_folder, raster_filename)
    if outname.find(".tif") != -1:
        outname = outname[0:len(outname) - 4]

    # arr: full size numpy array 3D XxYxZ 200x300x100
    arr = preprocessing.rio_array(input_raster, hdr_file=hdr_file)

    # activate to get list of dates from .hdr file (.hdr file needs to be specified above)
    # dates = arr[1]

    for i, func in enumerate(filter_functions):
        kernel_size = str(filter_args[i]['kernel'])
        filtered_arr = apply_along_axis.parallel_apply_along_axis(func1d=func, arr=arr[0], axis=0, cores=mp.cpu_count(),
                                                                  **filter_args[i])
        filtered_arr = np.rollaxis(filtered_arr, 2)
        filtered_arr = np.rollaxis(filtered_arr, 1)
        filtered_arr = np.rollaxis(filtered_arr, 2)

        dtype = type(filtered_arr[0][0][0])
        func_name_end = str(func).find(" at")
        func_name_start = 10
        func_name = str(func)[func_name_start:func_name_end]

        # exporting result to new raster
        export_arr.functions_out_array(outname=outname + "_" + func_name + str(kernel_size), arr=filtered_arr,
                                       input_file=input_raster, dtype=dtype)
    # print time to this point
    filter_time = datetime.now()
    print("filter-time = ", filter_time - start_time, "Hr:min:sec")
Beispiel #3
0
def subset_processed_data():
    """
    function to subset raster data using polygons from a shapefile and export the subset to a new folder
    all paths are given in user_data.py
    """
    import rasterio as rio
    import rasterio.mask
    import numpy as np
    ### install BanDiTS using: python3.6 -m pip install git+https://github.com/marlinmm/BanDiTS.git ###
    from BanDiTS.export_arr import functions_out_array
    import shutil

    subset_path = os.path.join(Paths.sen_processed_path, "subset/")
    if os.path.exists(subset_path):
        shutil.rmtree(subset_path)
    os.mkdir(subset_path)
    processed_file_list = extract_files_to_list(Paths.sen_processed_path,
                                                datatype=".tif")
    shapefile = import_polygons()
    for k, tifs in enumerate(processed_file_list):
        src1 = rio.open(processed_file_list[k])
        out_image1, out_transform1 = rio.mask.mask(src1, [shapefile[0][0]],
                                                   all_touched=1,
                                                   crop=True,
                                                   nodata=np.nan)
        ras_meta1 = src1.profile
        ras_meta1.update({
            "driver": "GTiff",
            "height": out_image1.shape[1],
            "width": out_image1.shape[2],
            "transform": out_transform1,
            "nodata": -9999
        })
        tmp1 = processed_file_list[k].index("_dir")
        tmp2 = len(processed_file_list[k])
        print(subset_path + processed_file_list[k][tmp1 + 5:tmp2 - 4])
        functions_out_array(outname=subset_path +
                            processed_file_list[k][tmp1 + 5:tmp2 - 4] +
                            "_subset.tif",
                            arr=out_image1,
                            input_file=processed_file_list[k],
                            dtype=np.float32,
                            ras_meta1=ras_meta1)
Beispiel #4
0
def main():

    ###################################     INPUT    ########################################

    # Input Folder Marlin:
    raster_folder = "C:/Users/marli/Desktop/GEO402_Testdaten/Input_Files/Raster/"
    # Input Folder Jonas:
    # raster_folder = "C:/Users/jz199/Documents/Studium/Master/1. Semester\Vorlesungsmitschriften/GEO402 - Ableitung von Landoberflächenparametern/Subset/"

    # Input file name
    raster_filename = "S1_A_VH_agulhas_full_study_site_50m"
    # raster_filename = "SubsetVH.tif"

    ###################################     OUTPUT    ########################################

    # Output Folder Marlin:
    output_folder = "C:/Users/marli/Desktop/GEO402_Testdaten/AAA_output/"
    # Output Folder Jonas:
    # output_folder = "C:/Users/jz199/Documents/Studium/Master/1. Semester\Vorlesungsmitschriften/GEO419 - Pythonprogrammierung Habermeyer/GEO402_Output/"



    # Output File Name:
    # output_file = raster_filename[0:len(raster_filename)-4] + "_median_filtered3.tif"
    output_file = raster_filename + "_median_test2.tif"
#simple_edge_detection
    ######################   NO USER INPUT BEYOND THIS POINT   ###############################

    input_raster = raster_folder + raster_filename
    hdr_file = input_raster + ".hdr"
    outname = output_folder + output_file

    # arr: full size numpy array 3D XxYxZ 200x300x100
    arr = preprocessing.rio_array(input_raster, hdr_file=hdr_file)

    dates = arr[1]
    #print(dates)

    # creating filtered array depending on set filter function
    filtered_arr = apply_along_axis.parallel_apply_along_axis(func1d=filter_functions.median_filter11, arr=arr[0], axis=0, cores=mp.cpu_count())
    filtered_arr = np.rollaxis(filtered_arr, 2)
    filtered_arr = np.rollaxis(filtered_arr, 1)
    filtered_arr = np.rollaxis(filtered_arr, 2)
    dtype = type(filtered_arr[0][0][0])
    #print(type(dtype)
    #if type(dtype) == np.float64:
    #    print("lalala")
    # --> change float64 to float32

    export_arr.functions_out_array(outname=outname, arr=filtered_arr, dates=dates, input_file=input_raster, dtype=dtype)


    # creating results with calling wanted algorithm in parallel_apply_along_axis for quick runtime
    #result = apply_along_axis.parallel_apply_along_axis(func1d=function.find_peaks, arr=arr[0], axis=0, cores=mp.cpu_count())

    # selecting dtype based on result
    dtype = np.int32 #type(result[0][0])
    # dtype = type(filtered_arr[0][0])
    # float64 to float32

    # exporting result to new raster
    #export_arr.functions_out_array(outname=outname, arr=result, dates=dates, input_file=input_raster, dtype=dtype)
    # export_arr.functions_out_array(outname=outname, arr=filtered_arr, input_file=input_raster, dtype=dtype)

    end_time = datetime.now()
    print("end-time = ", end_time-start_time, "Hr:min:sec")