Beispiel #1
0
    def test_Diversity_list_all_equals(self):

        from Base.Evaluation.metrics import Diversity_MeanInterList
        import scipy.sparse as sps

        n_items = 3
        n_users = 10
        cutoff = min(5, n_items)

        # create recommendation list
        URM_predicted_row = []
        URM_predicted_col = []

        diversity_list = Diversity_MeanInterList(n_items, cutoff)
        item_id_list = np.arange(0, n_items, dtype=np.int)

        for n_user in range(n_users):

            np.random.shuffle(item_id_list)
            recommended = item_id_list[:cutoff]
            URM_predicted_row.extend([n_user] * cutoff)
            URM_predicted_col.extend(recommended)

            diversity_list.add_recommendations(recommended)

        object_diversity = diversity_list.get_metric_value()

        URM_predicted_data = np.ones_like(URM_predicted_row)

        URM_predicted_sparse = sps.csr_matrix(
            (URM_predicted_data, (URM_predicted_row, URM_predicted_col)),
            dtype=np.int)

        co_counts = URM_predicted_sparse.dot(URM_predicted_sparse.T).toarray()
        np.fill_diagonal(co_counts, 0)

        all_user_couples_count = n_users**2 - n_users

        diversity_cumulative = 1 - co_counts / cutoff
        np.fill_diagonal(diversity_cumulative, 0)

        diversity_cooccurrence = diversity_cumulative.sum(
        ) / all_user_couples_count

        assert np.isclose(diversity_cooccurrence, object_diversity,
                          atol=1e-4), "metric incorrect"
Beispiel #2
0
def _create_empty_metrics_dict(cutoff_list, n_items, n_users, URM_train, URM_test, ignore_items, ignore_users, diversity_similarity_object):

    empty_dict = {}

    # global_RMSE_object = RMSE(URM_train + URM_test)


    for cutoff in cutoff_list:

        cutoff_dict = {}

        for metric in EvaluatorMetrics:
            if metric == EvaluatorMetrics.COVERAGE_ITEM:
                cutoff_dict[metric.value] = Coverage_Item(n_items, ignore_items)

            elif metric == EvaluatorMetrics.DIVERSITY_GINI:
                cutoff_dict[metric.value] = Gini_Diversity(n_items, ignore_items)

            elif metric == EvaluatorMetrics.SHANNON_ENTROPY:
                cutoff_dict[metric.value] = Shannon_Entropy(n_items, ignore_items)

            elif metric == EvaluatorMetrics.COVERAGE_USER:
                cutoff_dict[metric.value] = Coverage_User(n_users, ignore_users)

            elif metric == EvaluatorMetrics.DIVERSITY_MEAN_INTER_LIST:
                cutoff_dict[metric.value] = Diversity_MeanInterList(n_items, cutoff)

            elif metric == EvaluatorMetrics.DIVERSITY_HERFINDAHL:
                cutoff_dict[metric.value] = Diversity_Herfindahl(n_items, ignore_items)

            elif metric == EvaluatorMetrics.NOVELTY:
                cutoff_dict[metric.value] = Novelty(URM_train)

            elif metric == EvaluatorMetrics.AVERAGE_POPULARITY:
                cutoff_dict[metric.value] = AveragePopularity(URM_train)

            elif metric == EvaluatorMetrics.MAP:
                cutoff_dict[metric.value] = MAP()

            elif metric == EvaluatorMetrics.MRR:
                cutoff_dict[metric.value] = MRR()

            # elif metric == EvaluatorMetrics.RMSE:
            #     cutoff_dict[metric.value] = global_RMSE_object

            elif metric == EvaluatorMetrics.DIVERSITY_SIMILARITY:
                    if diversity_similarity_object is not None:
                        cutoff_dict[metric.value] = copy.deepcopy(diversity_similarity_object)
            else:
                cutoff_dict[metric.value] = 0.0


        empty_dict[cutoff] = cutoff_dict

    return  empty_dict
Beispiel #3
0
def create_empty_metrics_dict(n_items, n_users, URM_train, ignore_items,
                              ignore_users, cutoff,
                              diversity_similarity_object):

    empty_dict = {}

    # from Base.Evaluation.ResultMetric import ResultMetric
    # empty_dict = ResultMetric()

    for metric in EvaluatorMetrics:
        if metric == EvaluatorMetrics.COVERAGE_ITEM:
            empty_dict[metric.value] = Coverage_Item(n_items, ignore_items)

        elif metric == EvaluatorMetrics.DIVERSITY_GINI:
            empty_dict[metric.value] = Gini_Diversity(n_items, ignore_items)

        elif metric == EvaluatorMetrics.SHANNON_ENTROPY:
            empty_dict[metric.value] = Shannon_Entropy(n_items, ignore_items)

        elif metric == EvaluatorMetrics.COVERAGE_USER:
            empty_dict[metric.value] = Coverage_User(n_users, ignore_users)

        elif metric == EvaluatorMetrics.DIVERSITY_MEAN_INTER_LIST:
            empty_dict[metric.value] = Diversity_MeanInterList(n_items, cutoff)

        elif metric == EvaluatorMetrics.DIVERSITY_HERFINDAHL:
            empty_dict[metric.value] = Diversity_Herfindahl(
                n_items, ignore_items)

        elif metric == EvaluatorMetrics.NOVELTY:
            empty_dict[metric.value] = Novelty(URM_train)

        elif metric == EvaluatorMetrics.AVERAGE_POPULARITY:
            empty_dict[metric.value] = AveragePopularity(URM_train)

        elif metric == EvaluatorMetrics.MAP:
            empty_dict[metric.value] = MAP()

        elif metric == EvaluatorMetrics.MRR:
            empty_dict[metric.value] = MRR()

        elif metric == EvaluatorMetrics.DIVERSITY_SIMILARITY:
            if diversity_similarity_object is not None:
                empty_dict[metric.value] = copy.deepcopy(
                    diversity_similarity_object)
        else:
            empty_dict[metric.value] = 0.0

    return empty_dict