def do_buffer(gpd_lines,fasta,args):
  results = []
  for gpd_line in gpd_lines:
    gpd = GPD(gpd_line)
    l = gpd.get_length()
    if l < args.length: continue
    num = int(float(l)/float(args.length))
    rem = l % args.length
    #print 'rem : '+str(rem)
    extra = 0
    offset = 0
    #if space > 1: # we have room to make multiple passes
    #  #print '---'
    #  #print 'length: '+str(l)
    #  #print 'strand: '+gpd.get_strand()
    #  if random.random() < 0.5: extra = rem
    #  offset = int(float(args.length)/float(args.coverage))
    #else:
    #  offset = int(float(rem)/float(args.coverage)) 

    if args.short_reads:
      offset = 0
      if random.random() < 0.5: offset = rem
      gsub = gpd.subset(offset,args.length+offset)
      #print gsub.get_gpd_line()
      val = get_sam(gsub,fasta)
      results.append(val)
      #continue
    else:# not short reads
      for i in range(0,args.coverage):
        init = 0
        if num == 0 and rem > 0:
          init = random.choice(range(0,rem))
        elif num > 0:
          init = random.choice(range(0,args.length))
        #start = (i*offset+extra) % args.length
        #while start+args.length <= l:
        for j in range(init,l,args.length):
          if j + args.length > l: break
          #print str(start)+" "+str(start+args.length)
          gsub = gpd.subset(j,j+args.length)
          val = get_sam(gsub,fasta)
          results.append(val)
          #print gsub.get_sequence(fasta)
          #start += args.length
          #print gsub.get_strand()
    #print space
    #print rem
    #print gpd
  return results
Beispiel #2
0
def do_buffer(gpd_lines, fasta, args):
    results = []
    for gpd_line in gpd_lines:
        gpd = GPD(gpd_line)
        l = gpd.get_length()
        if l < args.length: continue
        num = int(float(l) / float(args.length))
        rem = l % args.length
        #print 'rem : '+str(rem)
        extra = 0
        offset = 0
        #if space > 1: # we have room to make multiple passes
        #  #print '---'
        #  #print 'length: '+str(l)
        #  #print 'strand: '+gpd.get_strand()
        #  if random.random() < 0.5: extra = rem
        #  offset = int(float(args.length)/float(args.coverage))
        #else:
        #  offset = int(float(rem)/float(args.coverage))

        if args.short_reads:
            offset = 0
            if random.random() < 0.5: offset = rem
            gsub = gpd.subset(offset, args.length + offset)
            #print gsub.get_gpd_line()
            val = get_sam(gsub, fasta)
            results.append(val)
            #continue
        else:  # not short reads
            for i in range(0, args.coverage):
                init = 0
                if num == 0 and rem > 0:
                    init = random.choice(range(0, rem))
                elif num > 0:
                    init = random.choice(range(0, args.length))
                #start = (i*offset+extra) % args.length
                #while start+args.length <= l:
                for j in range(init, l, args.length):
                    if j + args.length > l: break
                    #print str(start)+" "+str(start+args.length)
                    gsub = gpd.subset(j, j + args.length)
                    val = get_sam(gsub, fasta)
                    results.append(val)
                    #print gsub.get_sequence(fasta)
                    #start += args.length
                    #print gsub.get_strand()
        #print space
        #print rem
        #print gpd
    return results
Beispiel #3
0
def main():
  #do our inputs
  args = do_inputs()

  sys.stderr.write("Reading reference genepred\n")
  ref = {}
  tx_strand = {}
  z = 0
  with open(args.reference_genepred) as inf:
    for line in inf:
      gpd = GPD(line)
      gname = gpd.get_gene_name()
      tname = gpd.get_transcript_name()
      tx_strand[tname] = gpd.get_strand()
      if gname not in ref: ref[gname] = []
      ref[gname].append(gpd)
      z += 1
  sys.stderr.write("Read "+str(len(ref.keys()))+" genes and "+str(z)+" transcripts\n")

  if args.maximum_isoforms > 0:
    sys.stderr.write("Removing genes with more than "+str(args.maximum_isoforms)+" isoforms.\n")
    for gname in ref.keys():
      if len(ref[gname]) > args.maximum_isoforms: del ref[gname]
    sys.stderr.write("Now have "+str(len(ref.keys()))+" genes and "+str(sum([len(ref[x]) for x in ref.keys()]))+" transcripts\n")

  sys.stderr.write("Filtering by length "+str(args.minimum_length)+" bp\n")
  for gname in ref.keys():
    passing = []
    for gpd in ref[gname]:
      if gpd.get_length() < args.minimum_length: continue
      passing.append(gpd)
    if len(passing) == 0: del ref[gname]
    else: ref[gname] = passing
  sys.stderr.write("Now have "+str(len(ref.keys()))+" genes and "+str(sum([len(ref[x]) for x in ref.keys()]))+" transcripts\n")
  
  sys.stderr.write("Converting gpd into exon bed\n")
  beds = []
  for gname in ref.keys():
    for gpd in ref[gname]:
      tname = gpd.get_transcript_name()
      for i in range(0,len(gpd.exons)):
        ex = gpd.exons[i]
        beds.append(ex.get_range().get_bed_array()+[gname,tname,i])
  with open(args.tempdir+'/gpd.bed','w') as of:
    for bed in sorted(beds,key=lambda x: (x[0],x[1],x[2],x[3],x[4],x[5])):
      of.write("\t".join([str(x) for x in bed])+"\n")
  sys.stderr.write("intersecting with bed depth\n")
  of = open(args.tempdir+'/intersect.bed','w')
  cmd = 'bedtools intersect -wo -a - -b '+args.tempdir+'/gpd.bed'
  p = Popen(cmd.split(),stdin=args.bed_depth,stdout=of)
  p.communicate()
  coverage = {}
  sys.stderr.write("Reading the intersection\n")
  with open(args.tempdir+'/intersect.bed') as inf:
    for line in inf:
        f = line.rstrip().split("\t")
        gname = f[7]
        tname = f[8]
        depth = int(f[3])
        bed1 = Bed(f[0],int(f[1]),int(f[2]))
        bed2 = Bed(f[4],int(f[5]),int(f[6]))
        bed = bed1.union(bed2)
        bed.set_payload(depth)
        if gname not in coverage:
          coverage[gname] = {}
        if tname not in coverage[gname]:
          coverage[gname][tname] = []
        coverage[gname][tname].append(bed)
  transcript_depths = {}
  for gname in coverage:
    for tname in coverage[gname]:
      ref_gpd = [x for x in ref[gname] if x.get_transcript_name()==tname][0]
      rlen = ref_gpd.get_length()
      bases_covered = sum([x.length() for x in coverage[gname][tname]])
      bases_area = sum([x.length()*x.get_payload() for x in coverage[gname][tname]])
      avg_depth = float(bases_area)/float(rlen)
      if avg_depth < args.minimum_average_depth: continue
      if bases_covered < args.minimum_length: continue
      #print gname
      #print tname
      #print rlen
      #print bases_covered
      #print bases_area
      total_positions = {}
      for ex in ref_gpd.exons:
        b = ex.get_range().get_bed_array()
        for i in range(b[1],b[2]):
          total_positions[i] = 0 # zero indexed
      for b in coverage[gname][tname]:
        depth = b.get_payload()
        barr = b.get_bed_array()
        for i in range(barr[1],barr[2]):
          total_positions[i] = depth
      transcript_depths[tname] = total_positions
  sys.stderr.write("have information needed to plot from "+str(len(transcript_depths.keys()))+" transcripts\n")
  outputs = []
  for tname in transcript_depths:
    depths = transcript_depths[tname]
    positions = sorted(depths.keys())
    tx_len = len(positions)
    bins = {}
    for i in range(0,tx_len):
      bin = int(100*float(i)/float(tx_len))
      if bin not in bins: bins[bin] = []
      bins[bin].append(depths[positions[i]])
    for bin in bins:
      bins[bin] = average(bins[bin])
    biggest = float(max(bins.values()))
    tx_array = [float(bins[x])/biggest for x in sorted(bins.keys())]
    if tx_strand[tname] == '-':
      tx_array.reverse()
    #outputs.append(tx_array)
    args.output.write(tname+"\t"+"\t".join([str(x) for x in tx_array])+"\n")
  #for i in range(0,100):
  #  args.output.write("\t".join([str(x[i]) for x in outputs])+"\n")
  
  args.output.close()

  # Temporary working directory step 3 of 3 - Cleanup
  if not args.specific_tempdir:
    rmtree(args.tempdir)
def annotate_line(inputs):
    global txome
    (line, z, args) = inputs
    gpd = GPD(line)
    gpd.set_payload(z)
    v = gpd.get_range()
    if v.chr not in txome: return None
    possible = [x.get_payload() for x in txome[v.chr] if x.overlaps(v)]
    candidates = []
    if len(possible) == 0: return None
    for tx in possible:
        eo = None
        full = False
        subset = False
        econsec = 1
        if tx.get_exon_count() == 1 or gpd.get_exon_count() == 1:
            eo = gpd.exon_overlap(tx, single_minover=100, single_frac=0.5)
        else:
            eo = gpd.exon_overlap(tx,
                                  multi_minover=10,
                                  multi_endfrac=0,
                                  multi_midfrac=0.8,
                                  multi_consec=False)
            if eo.is_full_overlap():
                full = True
            if eo.is_subset():
                subset = True
            if eo:
                econsec = eo.consecutive_exon_count()
        if not eo: continue
        ecnt = eo.match_exon_count()
        osize = gpd.overlap_size(tx)
        candidates.append([
            full, subset, ecnt, econsec,
            gpd.get_exon_count(),
            tx.get_exon_count(), osize,
            gpd.get_length(),
            tx.get_length(), tx
        ])
    if len(candidates) == 0: return None
    bests = sorted(candidates,
                   key=lambda x: (-x[0], -x[1], -x[3], -x[2], -min(
                       float(x[6]) / float(x[7]),
                       float(x[6]) / float(x[8]))))
    #line_z
    v = bests[0]
    ### we have the annotation
    z = gpd.get_payload()
    #line = line_z[0]
    #gpd = GPD(line)
    if not v: return None
    type = 'partial'
    if v[0]: type = 'full'
    exon_count = v[2]
    most_consecutive_exons = v[3]
    read_exon_count = v[4]
    tx_exon_count = v[5]
    overlap_size = v[6]
    read_length = v[7]
    tx_length = v[8]
    return str(z)+"\t"+gpd.get_transcript_name()+"\t"+v[9].get_gene_name()+"\t"+v[9].get_transcript_name()+"\t"+type+"\t"+\
            str(exon_count)+"\t"+str(most_consecutive_exons)+"\t"+str(read_exon_count)+"\t"+str(tx_exon_count)+"\t"+\
            str(overlap_size)+"\t"+str(read_length)+"\t"+str(tx_length)+"\t"+gpd.get_range().get_range_string()+"\t"+v[9].get_range().get_range_string()+"\t"+str(v[9].get_payload())+"\n"
def annotate_line(inputs):
  global txome
  (line,z,args) = inputs
  gpd = GPD(line)
  gpd.set_payload(z)
  v = gpd.get_range()
  if v.chr not in txome: return None
  possible = [x.get_payload() for x in txome[v.chr] if x.overlaps(v)]
  candidates = []
  if len(possible) == 0: return None
  for tx in possible:
    eo = None
    full = False
    subset = False
    econsec = 1
    if tx.get_exon_count() == 1 or gpd.get_exon_count() == 1:
      eo = gpd.exon_overlap(tx,single_minover=100,single_frac=0.5)
    else:
      eo = gpd.exon_overlap(tx,multi_minover=10,multi_endfrac=0,multi_midfrac=0.8,multi_consec=False)
      if eo.is_full_overlap():
        full = True
      if eo.is_subset():
        subset = True
      if eo:
        econsec = eo.consecutive_exon_count()
    if not eo: continue
    ecnt = eo.match_exon_count()
    osize = gpd.overlap_size(tx)
    candidates.append([full,subset,ecnt,econsec,gpd.get_exon_count(),tx.get_exon_count(),osize,gpd.get_length(),tx.get_length(),tx])
  if len(candidates)==0: return None
  bests = sorted(candidates,key=lambda x: (-x[0],-x[1],-x[3],-x[2],-min(float(x[6])/float(x[7]),float(x[6])/float(x[8]))))
  #line_z
  v = bests[0]
  ### we have the annotation
  z = gpd.get_payload()
  #line = line_z[0]
  #gpd = GPD(line)
  if not v: return None
  type = 'partial'
  if v[0]: type = 'full'
  exon_count = v[2]    
  most_consecutive_exons = v[3]
  read_exon_count = v[4]
  tx_exon_count = v[5]
  overlap_size = v[6]
  read_length = v[7]
  tx_length = v[8]
  return str(z)+"\t"+gpd.get_transcript_name()+"\t"+v[9].get_gene_name()+"\t"+v[9].get_transcript_name()+"\t"+type+"\t"+\
          str(exon_count)+"\t"+str(most_consecutive_exons)+"\t"+str(read_exon_count)+"\t"+str(tx_exon_count)+"\t"+\
          str(overlap_size)+"\t"+str(read_length)+"\t"+str(tx_length)+"\t"+gpd.get_range().get_range_string()+"\t"+v[9].get_range().get_range_string()+"\t"+str(v[9].get_payload())+"\n"