Beispiel #1
0
    def __init__(self, atom_list, bucket_size=10):
        """Create the object.

        Arguments:
         - atom_list - list of atoms. This list is used in the queries.
           It can contain atoms from different structures.
         - bucket_size - bucket size of KD tree. You can play around
           with this to optimize speed if you feel like it.

        """
        from Bio.PDB.kdtrees import KDTree
        self.atom_list = atom_list
        # get the coordinates
        coord_list = [a.get_coord() for a in atom_list]
        # to Nx3 array of type float
        self.coords = numpy.array(coord_list, dtype="d")
        assert bucket_size > 1
        assert self.coords.shape[1] == 3
        self.kdt = KDTree(self.coords, bucket_size)
Beispiel #2
0
    def __init__(self, atom_list, bucket_size=10):
        """Create the object.

        Arguments:
         - atom_list - list of atoms. This list is used in the queries.
           It can contain atoms from different structures.
         - bucket_size - bucket size of KD tree. You can play around
           with this to optimize speed if you feel like it.

        """
        from Bio.PDB.kdtrees import KDTree
        self.atom_list = atom_list
        # get the coordinates
        coord_list = [a.get_coord() for a in atom_list]
        # to Nx3 array of type float
        self.coords = numpy.array(coord_list, dtype="d")
        assert bucket_size > 1
        assert self.coords.shape[1] == 3
        self.kdt = KDTree(self.coords, bucket_size)
Beispiel #3
0
class NeighborSearch(object):
    """Class for neighbor searching.

    This class can be used for two related purposes:

     1. To find all atoms/residues/chains/models/structures within radius
        of a given query position.
     2. To find all atoms/residues/chains/models/structures that are within
        a fixed radius of each other.

    NeighborSearch makes use of the KDTree class implemented in C for speed.
    """
    def __init__(self, atom_list, bucket_size=10):
        """Create the object.

        Arguments:
         - atom_list - list of atoms. This list is used in the queries.
           It can contain atoms from different structures.
         - bucket_size - bucket size of KD tree. You can play around
           with this to optimize speed if you feel like it.

        """
        from Bio.PDB.kdtrees import KDTree
        self.atom_list = atom_list
        # get the coordinates
        coord_list = [a.get_coord() for a in atom_list]
        # to Nx3 array of type float
        self.coords = numpy.array(coord_list, dtype="d")
        assert bucket_size > 1
        assert self.coords.shape[1] == 3
        self.kdt = KDTree(self.coords, bucket_size)

    # Private

    def _get_unique_parent_pairs(self, pair_list):
        # translate a list of (entity, entity) tuples to
        # a list of (parent entity, parent entity) tuples,
        # thereby removing duplicate (parent entity, parent entity)
        # pairs.
        # o pair_list - a list of (entity, entity) tuples
        parent_pair_list = []
        for (e1, e2) in pair_list:
            p1 = e1.get_parent()
            p2 = e2.get_parent()
            if p1 == p2:
                continue
            elif p1 < p2:
                parent_pair_list.append((p1, p2))
            else:
                parent_pair_list.append((p2, p1))
        return uniqueify(parent_pair_list)

    # Public

    def search(self, center, radius, level="A"):
        """Neighbor search.

        Return all atoms/residues/chains/models/structures
        that have at least one atom within radius of center.
        What entity level is returned (e.g. atoms or residues)
        is determined by level (A=atoms, R=residues, C=chains,
        M=models, S=structures).

        Arguments:
         - center - Numeric array
         - radius - float
         - level - char (A, R, C, M, S)

        """
        if level not in entity_levels:
            raise PDBException("%s: Unknown level" % level)
        center = numpy.require(center, dtype='d', requirements='C')
        if center.shape != (3, ):
            raise Exception("Expected a 3-dimensional NumPy array")
        points = self.kdt.search(center, radius)
        atom_list = [self.atom_list[point.index] for point in points]
        if level == "A":
            return atom_list
        else:
            return unfold_entities(atom_list, level)

    def search_all(self, radius, level="A"):
        """All neighbor search.

        Search all entities that have atoms pairs within
        radius.

        Arguments:
         - radius - float
         - level - char (A, R, C, M, S)

        """
        if level not in entity_levels:
            raise PDBException("%s: Unknown level" % level)
        neighbors = self.kdt.neighbor_search(radius)
        atom_list = self.atom_list
        atom_pair_list = []
        for neighbor in neighbors:
            i1 = neighbor.index1
            i2 = neighbor.index2
            a1 = atom_list[i1]
            a2 = atom_list[i2]
            atom_pair_list.append((a1, a2))
        if level == "A":
            # return atoms
            return atom_pair_list
        next_level_pair_list = atom_pair_list
        for l in ["R", "C", "M", "S"]:
            next_level_pair_list = self._get_unique_parent_pairs(
                next_level_pair_list)
            if level == l:
                return next_level_pair_list
Beispiel #4
0
    def compute(self, entity, level="A"):
        """Calculate surface accessibility surface area for an entity.

        The resulting atomic surface accessibility values are attached to the
        .sasa attribute of each entity (or atom), depending on the level. For
        example, if level="R", all residues will have a .sasa attribute. Atoms
        will always be assigned a .sasa attribute with their individual values.

        :param entity: input entity.
        :type entity: Bio.PDB.Entity, e.g. Residue, Chain, ...

        :param level: the level at which ASA values are assigned, which can be
            one of "A" (Atom), "R" (Residue), "C" (Chain), "M" (Model), or
            "S" (Structure). The ASA value of an entity is the sum of all ASA
            values of its children. Defaults to "A".
        :type entity: Bio.PDB.Entity

        >>> from Bio.PDB import PDBParser
        >>> from Bio.PDB.SASA import ShrakeRupley
        >>> p = PDBParser(QUIET=1)
        >>> # This assumes you have a local copy of 1LCD.pdb in a directory called "PDB"
        >>> struct = p.get_structure("1LCD", "PDB/1LCD.pdb")
        >>> sr = ShrakeRupley()
        >>> sr.compute(struct, level="S")
        >>> print(round(struct.sasa, 2))
        7053.43
        >>> print(round(struct[0]["A"][11]["OE1"].sasa, 2))
        9.64
        """
        is_valid = hasattr(entity,
                           "level") and entity.level in {"R", "C", "M", "S"}
        if not is_valid:
            raise ValueError(f"Invalid entity type '{type(entity)}'. "
                             "Must be Residue, Chain, Model, or Structure")

        if level not in _ENTITY_HIERARCHY:
            raise ValueError(
                f"Invalid level '{level}'. Must be A, R, C, M, or S.")
        elif _ENTITY_HIERARCHY[level] > _ENTITY_HIERARCHY[entity.level]:
            raise ValueError(
                f"Level '{level}' must be equal or smaller than input entity: {entity.level}"
            )

        # Get atoms onto list for lookup
        atoms = list(entity.get_atoms())
        n_atoms = len(atoms)
        if not n_atoms:
            raise ValueError("Entity has no child atoms.")

        # Get coordinates as a numpy array
        # We trust DisorderedAtom and friends to pick representatives.
        coords = np.array([a.coord for a in atoms], dtype=np.float64)

        # Pre-compute atom neighbors using KDTree
        kdt = KDTree(coords, 10)

        # Pre-compute radius * probe table
        radii_dict = self.radii_dict
        radii = np.array([radii_dict[a.element] for a in atoms],
                         dtype=np.float64)
        radii += self.probe_radius
        twice_maxradii = np.max(radii) * 2

        # Calculate ASAs
        asa_array = np.zeros((n_atoms, 1), dtype=np.int)
        ptset = set(range(self.n_points))
        for i in range(n_atoms):

            r_i = radii[i]

            # Move sphere to atom
            s_on_i = (np.array(self._sphere, copy=True) * r_i) + coords[i]
            available_set = ptset.copy()

            # KDtree for sphere points
            kdt_sphere = KDTree(s_on_i, 10)

            # Iterate over neighbors of atom i
            for jj in kdt.search(coords[i], twice_maxradii):
                j = jj.index
                if i == j:
                    continue

                if jj.radius < (r_i + radii[j]):
                    # Remove overlapping points on sphere from available set
                    available_set -= {
                        pt.index
                        for pt in kdt_sphere.search(coords[j], radii[j])
                    }

            asa_array[i] = len(available_set)  # update counts

        # Convert accessible point count to surface area in A**2
        f = radii * radii * (4 * np.pi / self.n_points)
        asa_array = asa_array * f[:, np.newaxis]

        # Set atom .sasa
        for i, atom in enumerate(atoms):
            atom.sasa = asa_array[i, 0]

        # Aggregate values per entity level if necessary
        if level != "A":
            entities = set(atoms)
            target = _ENTITY_HIERARCHY[level]
            for _ in range(target):
                entities = {e.parent for e in entities}

            atomdict = {a.full_id: idx for idx, a in enumerate(atoms)}
            for e in entities:
                e_atoms = [atomdict[a.full_id] for a in e.get_atoms()]
                e.sasa = asa_array[e_atoms].sum()
Beispiel #5
0
class NeighborSearch(object):
    """Class for neighbor searching.

    This class can be used for two related purposes:

     1. To find all atoms/residues/chains/models/structures within radius
        of a given query position.
     2. To find all atoms/residues/chains/models/structures that are within
        a fixed radius of each other.

    NeighborSearch makes use of the KDTree class implemented in C for speed.
    """

    def __init__(self, atom_list, bucket_size=10):
        """Create the object.

        Arguments:
         - atom_list - list of atoms. This list is used in the queries.
           It can contain atoms from different structures.
         - bucket_size - bucket size of KD tree. You can play around
           with this to optimize speed if you feel like it.

        """
        from Bio.PDB.kdtrees import KDTree
        self.atom_list = atom_list
        # get the coordinates
        coord_list = [a.get_coord() for a in atom_list]
        # to Nx3 array of type float
        self.coords = numpy.array(coord_list, dtype="d")
        assert bucket_size > 1
        assert self.coords.shape[1] == 3
        self.kdt = KDTree(self.coords, bucket_size)

    # Private

    def _get_unique_parent_pairs(self, pair_list):
        # translate a list of (entity, entity) tuples to
        # a list of (parent entity, parent entity) tuples,
        # thereby removing duplicate (parent entity, parent entity)
        # pairs.
        # o pair_list - a list of (entity, entity) tuples
        parent_pair_list = []
        for (e1, e2) in pair_list:
            p1 = e1.get_parent()
            p2 = e2.get_parent()
            if p1 == p2:
                continue
            elif p1 < p2:
                parent_pair_list.append((p1, p2))
            else:
                parent_pair_list.append((p2, p1))
        return uniqueify(parent_pair_list)

    # Public

    def search(self, center, radius, level="A"):
        """Neighbor search.

        Return all atoms/residues/chains/models/structures
        that have at least one atom within radius of center.
        What entity level is returned (e.g. atoms or residues)
        is determined by level (A=atoms, R=residues, C=chains,
        M=models, S=structures).

        Arguments:
         - center - Numeric array
         - radius - float
         - level - char (A, R, C, M, S)

        """
        if level not in entity_levels:
            raise PDBException("%s: Unknown level" % level)
        center = numpy.require(center, dtype='d', requirements='C')
        if center.shape != (3,):
            raise Exception("Expected a 3-dimensional NumPy array")
        points = self.kdt.search(center, radius)
        atom_list = [self.atom_list[point.index] for point in points]
        if level == "A":
            return atom_list
        else:
            return unfold_entities(atom_list, level)

    def search_all(self, radius, level="A"):
        """All neighbor search.

        Search all entities that have atoms pairs within
        radius.

        Arguments:
         - radius - float
         - level - char (A, R, C, M, S)

        """
        if level not in entity_levels:
            raise PDBException("%s: Unknown level" % level)
        neighbors = self.kdt.neighbor_search(radius)
        atom_list = self.atom_list
        atom_pair_list = []
        for neighbor in neighbors:
            i1 = neighbor.index1
            i2 = neighbor.index2
            a1 = atom_list[i1]
            a2 = atom_list[i2]
            atom_pair_list.append((a1, a2))
        if level == "A":
            # return atoms
            return atom_pair_list
        next_level_pair_list = atom_pair_list
        for l in ["R", "C", "M", "S"]:
            next_level_pair_list = self._get_unique_parent_pairs(next_level_pair_list)
            if level == l:
                return next_level_pair_list
Beispiel #6
0
    def __init__(self, coords, **kwargs):
        """
        :arg coords: coordinate array with shape ``(N, 3)``, where N is number
            of atoms
        :type coords: :class:`numpy.ndarray`, :class:`.Atomic`, :class:`.Frame`

        :arg unitcell: orthorhombic unitcell dimension array with shape
            ``(3,)``
        :type unitcell: :class:`numpy.ndarray`

        :arg bucketsize: number of points per tree node, default is 10
        :type bucketsize: int"""

        unitcell = kwargs.get('unitcell')
        if not isinstance(coords, ndarray):
            if unitcell is None:
                try:
                    unitcell = coords.getUnitcell()
                except AttributeError:
                    pass
                else:
                    if unitcell is not None:
                        LOGGER.info('Unitcell information from {0} will be '
                                    'used.'.format(str(coords)))
            try:
                # using getCoords() because coords will be stored internally
                # and reused when needed, this will avoid unexpected results
                # due to changes made to coordinates externally
                coords = coords.getCoords()
            except AttributeError:
                raise TypeError('coords must be a Numpy array or must have '
                                'getCoords attribute')
        else:
            coords = coords.copy()

        if coords.ndim != 2:
            raise Exception('coords.ndim must be 2')
        if coords.shape[-1] != 3:
            raise Exception('coords.shape must be (N,3)')
        if coords.min() <= -1e6 or coords.max() >= 1e6:
            raise Exception('coords must be between -1e6 and 1e6')

        self._bucketsize = kwargs.get('bucketsize', 10)

        if not isinstance(self._bucketsize, int):
            raise TypeError('bucketsize must be an integer')
        if self._bucketsize < 1:
            raise ValueError('bucketsize must be a positive integer')

        self._coords = None
        self._unitcell = None
        self._neighbors = None
        if unitcell is None:
            self._kdtree = CKDTree(3, self._bucketsize)
            self._kdtree.set_data(coords)
        else:
            if not isinstance(unitcell, ndarray):
                raise TypeError('unitcell must be a Numpy array')
            if unitcell.shape != (3, ):
                raise ValueError('unitcell.shape must be (3,)')
            self._kdtree = CKDTree(3, self._bucketsize)
            self._kdtree.set_data(coords)
            self._coords = coords
            self._unitcell = unitcell
            self._replicate = REPLICATE * unitcell
            self._kdtree2 = None
            self._pbcdict = {}
            self._pbckeys = []
            self._n_atoms = coords.shape[0]
        self._none = kwargs.pop('none', lambda: None)
        try:
            self._none()
        except TypeError:
            raise TypeError('none argument must be callable')
        self._oncall = kwargs.pop('oncall', 'both')
        assert self._oncall in ('both', 'dist'), 'oncall must be both or dist'
Beispiel #7
0
class KDTree(object):
    """An interface to Thomas Hamelryck's C KDTree module that can handle
    periodic boundary conditions.  Both point and pair search are performed
    using the single :meth:`search` method and results are retrieved using
    :meth:`getIndices` and :meth:`getDistances`.

    **Periodic Boundary Conditions**

    *Point search*

    A point search around a *center*, indicated with a question mark (``?``)
    below, involves making images of the point in cells sharing a wall or an
    edge with the unitcell that contains the system.  The search is performed
    for all images of the *center* (27 in 3-dimensional space) and unique
    indices with the minimum distance from them to the *center* are returned.
    ::

          _____________________________
         |        1|        2|        3|
         |       ? |       ? |      ?  |
         |_________|_________|_________|
         |        4|o  h h  5|        6| ? and H interact in periodic image 4
         |       ?H| h  o  ? |      ?  | but not in the original unitcell (5)
         |_________|_________|_________|
         |        7|        8|        9|
         |       ? |       ? |      ?  |
         |_________|_________|_________|

    There are two requirements for this approach to work: (i) the *center* must
    be in the original unitcell, and (ii) the system must be in the original
    unitcell with parts in its immediate periodic images.

    *Pair search*

    A pair search involves making 26 (or 8 in 2-d) replicas of the system
    coordinates.  A KDTree is built for the system (``O`` and ``H``) and all
    its replicas (``o`` and ``h``).  After pair search is performed, unique
    pairs of indices and minimum distance between them are returned.
    ::

          _____________________________
         |o  h h  1|o  h h  2|o  h h  3|
        h| h  o   h| h  o   h| h  o    |
         |_________|_________|_________|
         |o  h h  4|O  H H  5|o  h h  6|
        h| h  o   H| H  O   h| h  o    |
         |_________|_________|_________|
         |o  h h  7|o  h h  8|o  h h  9|
        h| h  o   h| h  o   h| h  o    |
         |_________|_________|_________|

    Only requirement for this approach to work is that the system must be
    in the original unitcell with parts in its immediate periodic images.


    .. seealso::
       :func:`.wrapAtoms` can be used for wrapping atoms into the single
       periodic image of the system."""
    def __init__(self, coords, **kwargs):
        """
        :arg coords: coordinate array with shape ``(N, 3)``, where N is number
            of atoms
        :type coords: :class:`numpy.ndarray`, :class:`.Atomic`, :class:`.Frame`

        :arg unitcell: orthorhombic unitcell dimension array with shape
            ``(3,)``
        :type unitcell: :class:`numpy.ndarray`

        :arg bucketsize: number of points per tree node, default is 10
        :type bucketsize: int"""

        unitcell = kwargs.get('unitcell')
        if not isinstance(coords, ndarray):
            if unitcell is None:
                try:
                    unitcell = coords.getUnitcell()
                except AttributeError:
                    pass
                else:
                    if unitcell is not None:
                        LOGGER.info('Unitcell information from {0} will be '
                                    'used.'.format(str(coords)))
            try:
                # using getCoords() because coords will be stored internally
                # and reused when needed, this will avoid unexpected results
                # due to changes made to coordinates externally
                coords = coords.getCoords()
            except AttributeError:
                raise TypeError('coords must be a Numpy array or must have '
                                'getCoords attribute')
        else:
            coords = coords.copy()

        if coords.ndim != 2:
            raise Exception('coords.ndim must be 2')
        if coords.shape[-1] != 3:
            raise Exception('coords.shape must be (N,3)')
        if coords.min() <= -1e6 or coords.max() >= 1e6:
            raise Exception('coords must be between -1e6 and 1e6')

        self._bucketsize = kwargs.get('bucketsize', 10)

        if not isinstance(self._bucketsize, int):
            raise TypeError('bucketsize must be an integer')
        if self._bucketsize < 1:
            raise ValueError('bucketsize must be a positive integer')

        self._coords = None
        self._unitcell = None
        self._neighbors = None
        if unitcell is None:
            self._kdtree = CKDTree(3, self._bucketsize)
            self._kdtree.set_data(coords)
        else:
            if not isinstance(unitcell, ndarray):
                raise TypeError('unitcell must be a Numpy array')
            if unitcell.shape != (3, ):
                raise ValueError('unitcell.shape must be (3,)')
            self._kdtree = CKDTree(3, self._bucketsize)
            self._kdtree.set_data(coords)
            self._coords = coords
            self._unitcell = unitcell
            self._replicate = REPLICATE * unitcell
            self._kdtree2 = None
            self._pbcdict = {}
            self._pbckeys = []
            self._n_atoms = coords.shape[0]
        self._none = kwargs.pop('none', lambda: None)
        try:
            self._none()
        except TypeError:
            raise TypeError('none argument must be callable')
        self._oncall = kwargs.pop('oncall', 'both')
        assert self._oncall in ('both', 'dist'), 'oncall must be both or dist'

    def __call__(self, radius, center=None):
        """Shorthand method for searching and retrieving results."""

        self.search(radius, center)
        if self._oncall == 'both':
            return self.getIndices(), self.getDistances()
        elif self._oncall == 'dist':
            return self.getDistances()

    def search(self, radius, center=None):
        """Search pairs within *radius* of each other or points within *radius*
        of *center*.

        :arg radius: distance (Å)
        :type radius: float

        :arg center: a point in Cartesian coordinate system
        :type center: :class:`numpy.ndarray`"""

        if not isinstance(radius, (float, int)):
            raise TypeError('radius must be a number')
        if radius <= 0:
            raise TypeError('radius must be a positive number')

        if center is not None:
            if not isinstance(center, ndarray):
                raise TypeError('center must be a Numpy array instance')
            if center.shape != (3, ):
                raise ValueError('center.shape must be (3,)')

            if self._unitcell is None:
                self._kdtree.search_center_radius(center, radius)
                self._neighbors = None

            else:
                kdtree = self._kdtree
                search = kdtree.search_center_radius
                get_radii = lambda: get_KDTree_radii(kdtree)
                get_indices = lambda: get_KDTree_indices(kdtree)
                get_count = kdtree.get_count

                _dict = {}
                _dict_get = _dict.get
                _dict_set = _dict.__setitem__
                for center in center + self._replicate:
                    search(center, radius)
                    if get_count():
                        [
                            _dict_set(i, min(r, _dict_get(i, 1e6)))
                            for i, r in zip(get_indices(), get_radii())
                        ]
                self._pbcdict = _dict
                self._pdbkeys = list(_dict)

        else:
            if self._unitcell is None:
                self._neighbors = self._kdtree.neighbor_search(radius)
            else:
                kdtree = self._kdtree2
                if kdtree is None:
                    coords = self._coords
                    coords = concatenate(
                        [coords + rep for rep in self._replicate])
                    kdtree = CKDTree(3, self._bucketsize)
                    kdtree.set_data(coords)
                    self._kdtree2 = kdtree
                n_atoms = len(self._coords)
                _dict = {}
                neighbors = kdtree.neighbor_search(radius)
                if kdtree.neighbor_get_count():
                    _get = _dict.get
                    _set = _dict.__setitem__

                    for nb in neighbors:
                        i = nb.index1 % n_atoms
                        j = nb.index2 % n_atoms
                        if i < j:
                            _set((i, j), min(nb.radius, _get((i, j), 1e6)))
                        elif j < i:
                            _set((j, i), min(nb.radius, _get((j, i), 1e6)))
                self._pbcdict = _dict
                self._pdbkeys = list(_dict)

    def getIndices(self):
        """Returns array of indices for points or pairs, depending on the type
        of the most recent search."""

        if self.getCount():
            if self._unitcell is None:
                if self._neighbors is None:
                    return get_KDTree_indices(self._kdtree)
                else:
                    return array([(n.index1, n.index2)
                                  for n in self._neighbors], int)
            else:
                return array(self._pdbkeys)
        return self._none()

    def getDistances(self):
        """Returns array of distances."""

        if self.getCount():
            if self._unitcell is None:
                if self._neighbors is None:
                    return get_KDTree_radii(self._kdtree)
                else:
                    return array([n.radius for n in self._neighbors])
            else:
                _dict = self._pbcdict
                return array([_dict[i] for i in self._pdbkeys])
        return self._none()

    def getCount(self):
        """Returns number of points or pairs."""

        if self._unitcell is None:
            if self._neighbors is None:
                return self._kdtree.get_count()
            else:
                return self._kdtree.neighbor_get_count()
        else:
            return len(self._pbcdict)
Beispiel #8
0
    def search(self, radius, center=None):
        """Search pairs within *radius* of each other or points within *radius*
        of *center*.

        :arg radius: distance (Å)
        :type radius: float

        :arg center: a point in Cartesian coordinate system
        :type center: :class:`numpy.ndarray`"""

        if not isinstance(radius, (float, int)):
            raise TypeError('radius must be a number')
        if radius <= 0:
            raise TypeError('radius must be a positive number')

        if center is not None:
            if not isinstance(center, ndarray):
                raise TypeError('center must be a Numpy array instance')
            if center.shape != (3, ):
                raise ValueError('center.shape must be (3,)')

            if self._unitcell is None:
                self._kdtree.search_center_radius(center, radius)
                self._neighbors = None

            else:
                kdtree = self._kdtree
                search = kdtree.search_center_radius
                get_radii = lambda: get_KDTree_radii(kdtree)
                get_indices = lambda: get_KDTree_indices(kdtree)
                get_count = kdtree.get_count

                _dict = {}
                _dict_get = _dict.get
                _dict_set = _dict.__setitem__
                for center in center + self._replicate:
                    search(center, radius)
                    if get_count():
                        [
                            _dict_set(i, min(r, _dict_get(i, 1e6)))
                            for i, r in zip(get_indices(), get_radii())
                        ]
                self._pbcdict = _dict
                self._pdbkeys = list(_dict)

        else:
            if self._unitcell is None:
                self._neighbors = self._kdtree.neighbor_search(radius)
            else:
                kdtree = self._kdtree2
                if kdtree is None:
                    coords = self._coords
                    coords = concatenate(
                        [coords + rep for rep in self._replicate])
                    kdtree = CKDTree(3, self._bucketsize)
                    kdtree.set_data(coords)
                    self._kdtree2 = kdtree
                n_atoms = len(self._coords)
                _dict = {}
                neighbors = kdtree.neighbor_search(radius)
                if kdtree.neighbor_get_count():
                    _get = _dict.get
                    _set = _dict.__setitem__

                    for nb in neighbors:
                        i = nb.index1 % n_atoms
                        j = nb.index2 % n_atoms
                        if i < j:
                            _set((i, j), min(nb.radius, _get((i, j), 1e6)))
                        elif j < i:
                            _set((j, i), min(nb.radius, _get((j, i), 1e6)))
                self._pbcdict = _dict
                self._pdbkeys = list(_dict)