def loading_ftr_CRFs(command):
    ##############################################################################
    if command == 'twitter_vs_sgforums_twitter_training':
        # loading CRF features for training
        path_ftr = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/twitter/labeling_CRF/crf_features/features_rmLink'

    elif command == 'twitter_vs_sgforums_sgforums_testing':
        # loading CRF features for testing
        path_ftr = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/CRFs_compareModel/sgforums/ftr_twitter'

    ##############################################################################
    if command == 'twitter_vs_facebook_twitter_training':
        # loading CRF features for training
        path_ftr = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/twitter/labeling_CRF/crf_features/features_rmLink'

    elif command == 'twitter_vs_facebook_facebook_testing':
        # loading CRF features for testing
        path_ftr = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/CRFs_compareModel/facebook/ftr_twitter'

    ##############################################################################
    elif command == 'sgforums_vs_twitter_sgforums_training':
        # features for training
        path_ftr = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/sgforums/20152207_singaporebuses_all_posts/labeling_CRF/crf_features/features'

    elif command == 'sgforums_vs_twitter_twitter_testing':
        # features for testing
        path_ftr = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/CRFs_compareModel/twitter/ftr_sgforums'

    ##############################################################################
    elif command == 'sgforums_vs_facebook_sgforums_training':
        # features for training
        path_ftr = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/sgforums/20152207_singaporebuses_all_posts/labeling_CRF/crf_features/features'

    elif command == 'sgforums_vs_facebook_facebook_testing':
        # features for testing
        path_ftr = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/CRFs_compareModel/facebook/ftr_sgforums'

    ##############################################################################
    elif command == 'facebook_vs_twitter_facebook_training':
        # features for training
        path_ftr = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/facebook/BusNews/labeling_CRF/crf_features/features'

    elif command == 'facebook_vs_twitter_twitter_testing':
        # features for testing
        path_ftr = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/CRFs_compareModel/twitter/ftr_facebook'

    ##############################################################################
    elif command == 'facebook_vs_sgforums_facebook_training':
        # features for training
        path_ftr = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/facebook/BusNews/labeling_CRF/crf_features/features'

    elif command == 'facebook_vs_sgforums_sgforums_testing':
        # features for testing
        path_ftr = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/CRFs_compareModel/sgforums/ftr_facebook'

    files_ = folder_files(path_ftr)
    features = featuers_CRF(files_, path_ftr)
    X = np.array(construct_ftr_CRF(features))  # construct the features for CRF
    print 'Finish loading features for CRF ' + command
    return X
        num_list_sentence = np.array(list_ftr_sentence)  # IMPORTANT. We need to convert to array before adding to list
        list_all_sentences.append(num_list_sentence)
    return list_all_sentences


if __name__ == "__main__":
    start = timeit.default_timer()  # get the start time

    # loading CRF features
    # path_ftr = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/twitter/labeling_CRF/crf_features/features_rmLinkWordVector/wordVec_30'
    # path_ftr = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/twitter/labeling_CRF/crf_features/features_rmLinkWordVector/wordVec_70'
    # path_ftr = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/twitter/labeling_CRF/crf_features/features_rmLinkWordVector/wordVec_100'
    # path_ftr = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/twitter/labeling_CRF/crf_features/features_rmLinkWordVector/wordVec_150'
    path_ftr = "D:/Project/Transportation_SMU-NEC_collaboration/Data/twitter/labeling_CRF/crf_features/features_rmLinkWordVector/wordVec_200"
    files_ = folder_files(path_ftr)
    features = featuers_CRF(files_, path_ftr)
    # construct_ftr_CRF_wordVector(features)
    X = np.array(construct_ftr_CRF_wordVector(features))  # construct the features for CRF
    print X.shape
    print "Finish loading features for CRF"
    #
    # # loading target labels
    path_ = "D:/Project/Transportation_SMU-NEC_collaboration/Data/twitter/labeling_CRF"
    name_ = "labeling_all.txt"
    list_line_ = filterTxt_CRF(load_file(path_, name_), "removeLink", "model")
    Y = np.array(load_target_label(list_line_))
    print Y.shape
    print "Finish loading target label"
    #
    # # for index in range(0, len(X)):
    # #     print len(X[index]), len(Y[index])