Beispiel #1
0
def register_device():
    patient_id = request.json['patient_id']
    spimo_id = request.json['spimo_id']
    pedal_id = request.json['pedal_id']
    date_time = datetime.datetime.now()
    connection = get_connection()
    table_name = 'dp_pair'

    data = {'device_id': spimo_id}
    row = read_data(table_name, data)
    #scenario 2: No such device_id
    if row is None:
        close_connection(connection)
        return str(2)
    #scenario 1: Successful
    elif row.patient_id is None:
        data = {'patient_id': patient_id, 'updated_date': date_time}
        condition = {'device_id': spimo_id}
        update_data(table_name, data, condition)
        condition = {'device_id': pedal_id}
        update_data(table_name, data, condition)
        close_connection(connection)
        return str(1)
    #scenario 2: duplicated id
    else:
        close_connection(connection)
        return str(0)
def return_device():
    patient_id = request.json['patient_id']
    device_id = request.json['device_id']
    date_time = datetime.datetime.now()
    table_name = 'dp_pair'
    row = read_data(table_name, data)
    # device has been returned
    if row.patient_id is None:
        return str(0)
    else:
        data = {'patient_id': None}
        condition = {'device_id': device_id}
        update_data(table_name, data, condition)
def handle_audio():
    api_result = json.loads(request.form.get('data'))
    seq = api_result["seq"]
    device_id = api_result["device_id"]
    session_id = api_result["session_id"]
    audiofile = request.files['audio']
    filename = werkzeug.utils.secure_filename(audiofile.filename)
    audiofile.save(filename)
    if filename is not None:
        signal, rate = sf.read(filename)
        wav_length = len(signal) / rate  #second
        window_length = 1
        # for index in range(sample_per_wav): # take ten windows in an audio file
        window_seed = random.uniform(0, abs(wav_length - window_length))
        window_range = (window_seed, window_seed + window_length)
        window_signal = signal[int(window_range[0] *
                                   rate):int(window_range[1] * rate)]

        mfcc_feat = mfcc(window_signal)
        mfcc_feat_scale = mfcc_feat / np.linalg.norm(mfcc_feat)
        mfcc_feat_scale = mfcc_feat_scale[np.newaxis, :]
        print(mfcc_feat_scale.shape)
        # result_array=(mfcc_feat-np.min(mfcc_feat))/np.ptp(mfcc_feat)

        model = tensorflow.keras.models.load_model('./model')
        predictions = model.predict(mfcc_feat_scale)
        print(predictions)
        into_sad_prob = predictions[0][0]
        into_angry_prob = predictions[0][1]
        into_happy_prob = predictions[0][2]
        into_neutral_prob = predictions[0][3]
        table_name = 'transaction_table'
        data = {
            'session_id': session_id,
            'seq': seq,
            'into_sad_prob': str(into_sad_prob),
            'into_angry_prob': str(into_angry_prob),
            'into_happy_prob': str(into_happy_prob),
            'into_neutral_prob': str(into_neutral_prob)
        }
        r_data = {'session_id': session_id, 'seq': seq}
        connection = get_connection()
        row, number_rows = read_data(table_name, r_data, connection)
        if number_rows == 0:
            connection = insert_data(table_name, data, connection)
        else:
            condition = {'session_id': session_id, 'seq': seq}
            connection = update_data(table_name, data, condition, connection)
        return str(1)
    else:
        return str(0)
Beispiel #4
0
def device_refresh():
    patient_id = request.args.get('patient_id')
    print(patient_id)
    device_id = request.args.get('device_id')
    print(device_id)
    connection = get_connection()
    table_name = 'dp_pair'
    data = {'device_id': device_id, 'patient_id': patient_id}
    row = read_data(table_name, data)
    start_time = row.start_time
    current_time = datetime.datetime.now()
    if (device_id[0:3] == 'SPI'):
        table_name = 'spimo'
    elif (device_id[0:3] == 'PED'):
        table_name = 'pedal'
    row = read_count(table_name, start_time, current_time, device_id)
    result = row.total_count
    close_connection(connection)
    return str(result)
def handle_ml():
    session_id = request.json['session_id']
    seq = request.json['seq']
    table_name = 'transaction_table'
    connection = get_connection()
    text_senti_avg, text_senti_std, text_senti_min, text_senti_max = calculate_features(
        table_name, session_id, seq, connection)
    condition = {'session_id': session_id, 'seq': seq}
    features_data = {
        'text_senti_avg': text_senti_avg,
        'text_senti_std': text_senti_std,
        'text_senti_min': text_senti_min,
        'text_senti_max': text_senti_max
    }
    update_data(table_name, features_data, condition, connection)
    r_data = {'session_id': session_id, 'seq': seq}
    rows, number_rows = read_data(table_name, r_data, connection)
    emotion_label = send_request_to_ml(rows)
    features_data = {'result': emotion_label}
    update_data(table_name, features_data, condition, connection)
    close_connection(connection)
    return emotion_label
Beispiel #6
0
def return_device():
    patient_id = request.json['patient_id']
    spimo_id = request.json['spimo_id']
    pedal_id = request.json['pedal_id']
    date_time = datetime.datetime.now()
    connection = get_connection()
    table_name = 'dp_pair'
    data = {'device_id': spimo_id}
    row = read_data(table_name, data)
    # device has been returned
    if row.patient_id is None:
        close_connection(connection)
        return str(0)
    else:
        data = {'patient_id': None, 'updated_date': None}
        condition = {'device_id': spimo_id}
        update_data(table_name, data, condition)
        condition = {'device_id': pedal_id}
        update_data(table_name, data, condition)

        close_connection(connection)
        return str(1)