from CSVParser.Helper import Helper import plotly.graph_objs as go import plotly from scipy.fftpack import fft plotly.offline.init_notebook_mode() # car_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Car.csv' # motor_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Motorcycle.csv' car_path = '/home/aaa/Desktop/City/PyCity/Data/Car.csv' motor_path = '/home/aaa/Desktop/City/PyCity/Data/Motorcycle.csv' Helper = Helper() Car = Helper.reader(car_path) car = Helper.preprocess(Car) Motor = Helper.reader(motor_path) motor = Helper.preprocess(Motor) # print(car[0].get('speed')) new_time = Helper.time_rescale(car[0].get('time')) trace0 = go.Scatter( y = abs(fft(car[0].get('speed'))), mode = 'lines', name = 'lines' ) trace1 = go.Scatter( y = abs(fft(motor[7].get('speed'))), mode = 'lines', name = 'lines'
from CSVParser.Helper import Helper import plotly.graph_objs as go import plotly plotly.offline.init_notebook_mode() # car_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Car.csv' # motor_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Motorcycle.csv' car_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Car.csv' motor_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Motorcycle.csv' Helper = Helper() Car = Helper.reader(car_path) car = Helper.preprocess(Car) Motor = Helper.reader(motor_path) motor = Helper.preprocess(Motor) # print(car[0].get('speed')) new_time = Helper.time_rescale(car[0].get('time')) # print(new_time) trace0 = go.Scatter(y=car[0].get('speed'), x=new_time, mode='lines', name='lines') trace1 = go.Scatter(y=motor[7].get('speed'), x=Helper.time_rescale(motor[7].get('time')), mode='lines', name='lines')
import plotly.graph_objs as go import plotly plotly.offline.init_notebook_mode() # car_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Car.csv' # motor_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Motorcycle.csv' # bike_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Bicycle.csv' # run_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Run.csv' # walk_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Walk.csv' # Linux path car_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Car.csv' motor_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Motorcycle.csv' bike_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Bicycle.csv' run_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Run.csv' walk_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Walk.csv' Helper = Helper() Car = Helper.reader(car_path) car = Helper.preprocess(Car) avg_speed_car = Helper.avg_speed(car) avg_speed_car_nz = Helper.avg_speed_nozero(car) max_speed_car = Helper.max(car) Motor = Helper.reader(motor_path) motor = Helper.preprocess(Motor) avg_speed_motor = Helper.avg_speed(motor) avg_speed_motor_nz = Helper.avg_speed_nozero(motor) max_speed_motor = Helper.max(motor) # CAR trace = go.Scatter(y=avg_speed_car_nz,
from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB # Wndows path # car_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Car.csv' # motor_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Motorcycle.csv' # bike_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Bicycle.csv' # run_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Run.csv' # walk_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Walk.csv' # Linux path car_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Car.csv' motor_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Motorcycle.csv' bike_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Bicycle.csv' run_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Run.csv' walk_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Walk.csv' Helper = Helper() Car = Helper.reader(car_path) car = Helper.preprocess(Car) avg_speed_car = Helper.avg_speed(car) min_speed_car = Helper.min(car) max_speed_car = Helper.max(car) car_data = Helper.feature_list(max_speed_car, min_speed_car, avg_speed_car, 'car') Motor = Helper.reader(motor_path) motor = Helper.preprocess(Motor) std_speed_m = Helper.std(motor) trace0 = go.Scatter(y=std_speed, mode='markers',
from CSVParser.Helper import Helper car_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Car.csv' # car_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Car.csv' motor_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Motorcycle.csv' bike_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Bicycle.csv' run_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Run.csv' walk_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Walk.csv' data = [] Helper = Helper() Car = Helper.reader(car_path) car_speed =[] speed = [] zero = [] inn = [] temp = None for car in Car: found = 0 for idx, val in enumerate(car): if float(val['accuracy']) > 200: print('ok') print(val['accuracy']) break
plotly.offline.init_notebook_mode() # car_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Car.csv' # motor_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Motorcycle.csv' # bike_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Bicycle.csv' # run_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Run.csv' # walk_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Walk.csv' # Linux path car_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Car.csv' motor_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Motorcycle.csv' bike_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Bicycle.csv' run_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Run.csv' walk_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Walk.csv' Helper = Helper() Car = Helper.reader(car_path) car = Helper.preprocess(Car) avg_speed_car = Helper.avg_speed(car) avg_speed_car_nz = Helper.avg_speed_nozero(car) max_speed_car = Helper.max(car) Motor = Helper.reader(motor_path) motor = Helper.preprocess(Motor) avg_speed_motor = Helper.avg_speed(motor) avg_speed_motor_nz = Helper.avg_speed_nozero(motor) max_speed_motor = Helper.max(motor) # CAR trace = go.Scatter( y = avg_speed_car_nz, name = 'remove stop point',
import csv import numpy as np import plotly.graph_objs as go import plotly.plotly as py import plotly from CSVParser.Helper import Helper plotly.offline.init_notebook_mode() Helper = Helper() # plotly.tools.set_credentials_file(username='******', api_key='p5gx4csvk1') car_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Car.csv' motor_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Motorcycle.csv' bike_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Bicycle.csv' run_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Run.csv' walk_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Walk.csv' # path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Car.csv' data = [] Car = Helper.reader(car_path) car_speed =[] for car in Car: speed = [float(s['bering']) for s in car] car_speed.append(speed) car_plot = go.Box( y=car_speed[4], name='Car'
from CSVParser.Helper import Helper car_path = 'C:\\Users\Phatthanaphong\Desktop\City\PyCity\Data\Car.csv' # car_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Car.csv' motor_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Motorcycle.csv' bike_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Bicycle.csv' run_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Run.csv' walk_path = '/home/phatthanapong/Desktop/City/PyCity/Data/Walk.csv' data = [] Helper = Helper() Car = Helper.reader(car_path) car_speed = [] speed = [] zero = [] inn = [] temp = None for car in Car: found = 0 for idx, val in enumerate(car): if float(val['accuracy']) > 200: print('ok') print(val['accuracy']) break
from sklearn.naive_bayes import GaussianNB from sklearn.neural_network import MLPClassifier # Wndows path car_path = 'C:\\Users\phatt\Desktop\City\PyCity\Data\Car.csv' motor_path = 'C:\\Users\phatt\Desktop\City\PyCity\Data\Motorcycle.csv' bike_path = 'C:\\Users\phatt\Desktop\City\PyCity\Data\Bicycle.csv' run_path = 'C:\\Users\phatt\Desktop\City\PyCity\Data\Run.csv' walk_path = 'C:\\Users\phatt\Desktop\City\PyCity\Data\Walk.csv' # Linux path # car_path = '/home/aaa/Desktop/City/PyCity/Data/Car.csv' # motor_path = '/home/aaa/Desktop/City/PyCity/Data/Motorcycle.csv' # bike_path = '/home/aaa/Desktop/City/PyCity/Data/Bicycle.csv' # run_path = '/home/aaa/Desktop/City/PyCity/Data/Run.csv' # walk_path = '/home/aaa/Desktop/City/PyCity/Data/Walk.csv' Helper = Helper() Car = Helper.reader(car_path) car = Helper.preprocess(Car) avg_speed_car = Helper.avg_speed(car) std_speed_car = Helper.std(car) avg_speed_car_nozero = Helper.avg_speed_nozero(car) max_speed_car = Helper.max(car) car_data = Helper.feature_list(max_speed_car,std_speed_car,avg_speed_car,avg_speed_car_nozero,'car') Motor = Helper.reader(motor_path) motor = Helper.preprocess(Motor) avg_speed_motor = Helper.avg_speed(motor) avg_speed_motor_nz = Helper.avg_speed_nozero(motor)