def standard_deviation(data):
    avg = mean(data)
    num_values = len(data)
    sd1 = 0
    for num in data:
        sd1 = addition(sd1, squared(subtraction(mean, num)))
    return squarerooted(division(num_values, sd1))
Beispiel #2
0
def variance(val1, val2, val3, val4, val5, val6, val7, val8, val9, val10):
    try:
        variance_values = [
            val1, val2, val3, val4, val5, val6, val7, val8, val9, val10
        ]
        variance_float = [float(i) for i in variance_values]
        variance_mean = mean(*variance_float)
        variance_length = len(variance_float)
        x = 0
        for i in variance_float:
            x = x + squared(i - variance_mean)
        return division(x, subtraction(variance_length, 1))
    except TypeError:
        print("Median is a Number . Cannot Input Text")
Beispiel #3
0
def pvariance(val1, val2, val3, val4, val5, val6, val7, val8, val9, val10):
    try:
        pvariance_values = [
            val1, val2, val3, val4, val5, val6, val7, val8, val9, val10
        ]
        pvariance_float = [float(i) for i in pvariance_values]
        pvariance_mean = mean(*pvariance_float)
        pvariance_length = len(pvariance_float)
        x = 0
        for i in pvariance_float:
            x = x + squared(i - pvariance_mean)
        population_variance = division(x, pvariance_length)
        return population_variance
    except TypeError:
        print("Population Variance is a Number . Cannot Input Text")
 def square(self, a):
     self.result = squared(a)
     return self.result