X = [0] * (N + 1) A = [0] * (N + 1) B = [0] * (N + 1) C = [0] * (N + 1) D = [0] * (N + 1) ITERATIONS = [[0] * (N + 1)] * 5 RESULT0 = [0] * (N + 1) RESULT1 = [0] * (N + 1) RESULT2 = [0] * (N + 1) RESULT3 = [0] * (N + 1) RESULT4 = [0] * (N + 1) ALPHA = [0] * (N + 1) BETA = [0] * (N + 1) Y = [0] * (N + 1) # константа а в уравнении const = 4 * (2 * theta(T))**2 / math.pi * (r_0(rho))**2 # СЕТКА def x(): for i in range(N + 1): X[i] = (i / N)**2 def phi(s=s_current, T=T, rho=rho): for i in range(N + 1): if i == 0: PHI_S[s_current][0] = z / (theta(T) * r_0(rho)) else: PHI_S[s_current][i] = z / (theta(T) * r_0(rho)) * (
def n_e_full1(i): return (((2*theta(T))**1.5)/(2*(math.pi)**2))*integral_1_2((V(i)+Chem_potential_e())/theta(T))
def rho_e(i): return c1*integral_1_2((V(i)+Chem_potential_e())/theta(T))
def n_e_pribl(): return (((2*theta(T))**1.5)/(2*(math.pi)**2))*integral_1_2((Chem_potential_e())/theta(T))
def Vr(i): return (PHI[i] + Chem_potential_e_preved*X[i]*r0)*theta(T)
def Chem_potential_e(): return theta(T)*PHI[N]
def x(): for i in range(1,N + 1): X[i] = (i / N) ** 2 x() X[0] = X[1]/2 n_e_full = [0]*(N+1) #def Chem_potential_e(): # return (RESULT3[N]) def Chem_potential_e(): return -1.33*(10**(-2)) def n_e_pribl(): return (((2*theta(T))**1.5)/(2*(math.pi)**2))*integral_1_2((Chem_potential_e())/theta(T)) u = n_e_pribl() Z0 = u * (4/3) * math.pi * ((r0)**3) print(((-Chem_potential_e())/theta(T))) print(r0) print(theta(T)) print(Z0) #print(RESULT3[0]) #print(Chem_potential_e()) #Chem_potential_e =9.780787802584433 #print(Chem_potential_e()) Chem_potential_e_preved = -Chem_potential_e()/theta(T) def Vr(i): return (PHI[i] + Chem_potential_e_preved*X[i]*r0)*theta(T) def V(i): return Vr(i)/(X[i]*r0) def g(r): return 1/(1+(math.e**(k*(r-R))))
def S(T, rho): return 0.9648 * 10**2 / Atom_weight * (S_e(T, rho) + 3 / 2 * log( 1836 * Atom_weight * theta(T) * volume(rho, 1)** (2 / 3) / 2 / pi, e) + 5 / 3)
from Atom_parameters import Atom_weight, z from Cell import z_0, r_0, volume, theta, eta from working_progonka import progonka, X PHI = progonka(T, rho, 1, 1) RESULT_V = [0] * (N + 1) R = [] F = [0] * (N + 1) V = [0] * (N + 1) for i in range(N + 1): R.append(X[i] * r_0(rho)) mu = PHI[N] for i in range(N + 1): if i == 0: F[0] = z / theta(T) else: F[i] = PHI[i] / X[i] * R[i] for i in range(1, N + 1): if i == N: V[N] = 0 else: V[i] = F[i] / R[i] * theta(T) - mu for i in range(N + 1): if i == 0: RESULT_V[0] = z else: RESULT_V[i] = (V[i] * R[N] + eta(T, rho) * R[i]) * theta(T) RESULT_R = [0] * (N + 1) for i in range(N + 1): RESULT_R[i] = R[i]
RESULT = [0] * s for i in range(s): RESULT[i] = [0] * (N + 1) X = [0] * (N + 1) A = [0] * (N) B = [0] * (N) C = [0] * (N) D = [0] * (N) ALPHA = [0] * (N + 1) BETA = [0] * (N + 1) Y = [0] * (N + 1) # константа а в уравнении const = 4 * (2 * theta(T))**(1 / 2) / math.pi * (r_0(rho))**2 # СЕТКА for i in range(N + 1): X[i] = (i / N)**2 for i in range(N + 1): if i == 0: PHI_S[0][0] = z / (theta(T) * r_0(rho)) else: PHI_S[0][i] = z / (theta(T) * r_0(rho)) * (1 - 3 / 2 * X[i] + 1 / 2 * (X[i])**3) - eta(T, rho) * X[i] # ШАГ СЕТКИ
def S_e(T, rho): const = 4 * 2**(1 / 2) * theta(T)**(3 / 2) * r_0(rho, 1)**3 / pi #print(const * S_sub_int(T, rho)) return const * S_sub_int(T, rho)
def Energy(T, rho, z, Atom_weight): PHI = progonka(T, rho, Atom_weight, z) # ВСПОМ. ИНТЕГРАЛ def E_sub_int(T, rho): max_i = 2 while (PHI[max_i] / X[max_i] >= 10**6) and (max_i < N): max_i += 1 if max_i % 2 != 0: max_i -= 1 integr_int_1 = [Z[i] for i in range(max_i + 1)] integr_int_2 = [Z[i] for i in range(max_i, N + 1)] #integr_int_2 = [X[i] for i in range(max_i, N + 1)] integr_func_1 = [4/5 * PHI[i]**2.5 for i in range(max_i + 1)] integr_func_2 = [2 * Z[i]**5 * integral_3_2(PHI[i] / Z[i]**2) for i in range(max_i, N + 1)] integr_res_1 = integrate.simps(integr_func_1, integr_int_1) integr_res_2 = integrate.simps(integr_func_2, integr_int_2) return integr_res_1 + integr_res_2 const = 2**(0.5) / (pi**2) * (theta(T)**2.5) * (4/3) * pi * r_0(rho, 1)**3 # КИНЕТИЧЕСКАЯ ЭНЕРГИЯ #def E_k(T, rho): # #return (3 * 2**0.5 / pi**2) * volume(rho) * theta(T)**2.5 * E_sub_int(T, rho) # # return 3 * const * E_sub_int(T, rho) ## ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ #def E_p(T, rho): # #return (2 * 2**0.5 / pi**2) * volume(rho) * theta(T)**2.5 * (integral_3_2(-eta(T, rho)) - 3 * E_sub_int(T, rho)) # return 2 * const * (integral_3_2(-eta(T, rho, 1, 1)) - 3 * E_sub_int(T, rho)) # Проверяем virial theorem #print(2 * E_k(Temperature_system, rho_system) + E_p(Temperature_system, rho_system)) #print(3 * P_e(Temperature_system, rho_system) * volume(rho_system)) ## ВНУТРЕННЯЯ ЭНЕРГИЯ ЭЛЕКТРОНОВ #def E_e(T, rho): # return E_k(T, rho) + E_p(T, rho) # # ПОЛНАЯ ЭНЕРГИЯ def E(T, rho): #return E_e(T, rho) - E_0 + 3/2 * theta(T) return const * (2 * integral_3_2(-eta(T, rho, 1, 1)) - 3*E_sub_int(T, rho)) + 0.76874512421364*1**(7/3) return E(T , rho)
def electron_density(i): return const_e*int1_2((V(i)+Chem_potential_e())/theta(T))
def Vr(i): return ((PHI[i])*theta(T)*r0 - Chem_potential_e()*X[i]*r0)
def progonka_2N(T, rho): # константа а в уравнении const_a = 4 * (2 * theta(T))**0.5 / pi * (r_0(rho))**2 PHI_S = [[0 for i in range(N + 1)] for j in range(s + 1)] RESULT = [[0 for i in range(N + 1)] for j in range(s)] for i in range(N + 1): if i == 0: PHI_S[0][0] = z / (theta(T) * r_0(rho)) else: PHI_S[0][i] = z / (theta(T) * r_0(rho)) * (1 - 3 / 2 * U[i] + 1 / 2 * (U[i])**3) - eta_0(T, rho) * U[i] s_current = 0 while s_current < s: B = [0] + [ -4 * U[i] * (1 + const_a * h_N**2 * U[i]**2 * integral_minus_1_2(PHI_S[s_current][i] / U[i]**2)) for i in range(1, N) ] D = [0] + [ 4 * const_a * h_N**2 * U[i]**3 * (2 * U[i]**2 * integral_1_2(PHI_S[s_current][i] / U[i]**2) - PHI_S[s_current][i] * integral_minus_1_2(PHI_S[s_current][i] / U[i]**2)) for i in range(1, N) ] ALPHA = [0] * (N + 1) BETA = [0] * (N + 1) for i in range(N - 1, -1, -1): if i == N - 1: ALPHA[i] = 1 / ( 1 - 2 * h_N + h_N**2 * (1 + const_a * integral_minus_1_2(PHI_S[s_current][N]))) BETA[i] = -h_N**2 * const_a * ( 2 * integral_1_2(PHI_S[s_current][N]) - PHI_S[s_current][i] * integral_minus_1_2(PHI_S[s_current][N])) * ALPHA[N - 1] else: ALPHA[i] = -A[i + 1] / (B[i + 1] + C[i + 1] * ALPHA[i + 1]) BETA[i] = (D[i + 1] - C[i + 1] * BETA[i + 1]) / ( B[i + 1] + C[i + 1] * ALPHA[i + 1]) # ИСКОМОЕ УРАВНЕНИЕ Y = [0] * (N + 1) for i in range(N + 1): if i == 0: Y[i] = z / (theta(T) * r_0(rho)) else: Y[i] = ALPHA[i - 1] * Y[i - 1] + BETA[i - 1] for i in range(N + 1): RESULT[s_current][i] = PHI_S[s_current][i] * theta(T) for i in range(N + 1): PHI_S[s_current + 1][i] = Y[i] s_current += 1 PHI = [RESULT[8][i] / theta(T) for i in range(N + 1)] return PHI
def priblizhenie_hi(sigma): const = 4 * (2 * theta(T))**0.5 / pi * (r_0(rho))**2 Y[N] = sigma Z[N] = sigma for i_iter in range(N, 1, -1): h[i_iter] = (-2 * i_iter + 1) / N**2 k1[i_iter] = h[i_iter] * const * ( integral_sht_1_2(PHI[i_iter] / X[i_iter]) * Y[i_iter] + X[i_iter] * igrek_sht(PHI[i_iter] / X[i_iter])) q1[i_iter] = h[i_iter] * Z[i_iter] #k2[i_iter] = h[i_iter] * const * (integral_sht_1_2(((PHI[i_iter] + PHI[i_iter - 1]) / 2) / ((X[i_iter] + X[i_iter - 1]) / 2)) * (Y[i_iter] + q1[i_iter] / 2) + ((X[i_iter] + X[i_iter - 1]) / 2) * igrek_sht((PHI[i_iter] + PHI[i_iter - 1]) / 2) / ((X[i_iter] + X[i_iter - 1]) / 2)) k2[i_iter] = h[i_iter] * const * ( integral_sht_1_2(PHI_2N[2 * i_iter - 1] / X[i_iter]) * (Y[i_iter] + q1[i_iter] / 2) + X[i_iter] * igrek_sht(PHI_2N[2 * i_iter - 1] / X[i_iter])) q2[i_iter] = h[i_iter] * (Z[i_iter] + k1[i_iter] / 2) #k3[i_iter] = h[i_iter] * const * (integral_sht_1_2(((PHI[i_iter] + PHI[i_iter - 1]) / 2) / ((X[i_iter] + X[i_iter - 1]) / 2)) * (Y[i_iter] + q2[i_iter] / 2) + ((X[i_iter] + X[i_iter - 1]) / 2) * igrek_sht((PHI[i_iter] + PHI[i_iter - 1]) / 2) / ((X[i_iter] + X[i_iter - 1]) / 2)) k3[i_iter] = h[i_iter] * const * ( integral_sht_1_2(PHI_2N[2 * i_iter - 1] / X[i_iter]) * (Y[i_iter] + q2[i_iter] / 2) + X[i_iter] * igrek_sht(PHI_2N[2 * i_iter - 1] / X[i_iter])) q3[i_iter] = h[i_iter] * (Z[i_iter] + k2[i_iter] / 2) k4[i_iter] = h[i_iter] * const * ( integral_sht_1_2(PHI[i_iter - 1] / X[i_iter - 1]) * (Y[i_iter] + q3[i_iter]) + X[i_iter - 1] * igrek_sht(PHI[i_iter - 1] / X[i_iter - 1])) q4[i_iter] = h[i_iter] * (Z[i_iter] + k3[i_iter]) Y[i_iter - 1] = Y[i_iter] + (q1[i_iter] + 2 * q2[i_iter] + 2 * q3[i_iter] + q4[i_iter]) / 6 Z[i_iter - 1] = Z[i_iter] + (k1[i_iter] + 2 * k2[i_iter] + 2 * k3[i_iter] + k4[i_iter]) / 6 Z[0] = Z[1] + 1 / 3 * (Z[1] - Z[2]) i_iter = 1 k1[i_iter] = h[i_iter] * const * ( integral_sht_1_2(PHI[i_iter] / X[i_iter]) * Y[i_iter] + X[i_iter] * igrek_sht(PHI[i_iter] / X[i_iter])) q1[i_iter] = h[i_iter] * Z[i_iter] k2[i_iter] = h[i_iter] * const * ( integral_sht_1_2(PHI_2N[2 * i_iter - 1] / X[i_iter]) * (Y[i_iter] + q1[i_iter] / 2) + X[i_iter] * igrek_sht(PHI_2N[2 * i_iter - 1] / X[i_iter])) #k2[i_iter] = h[i_iter] * const * (integral_sht_1_2(((PHI[i_iter] + PHI[i_iter - 1]) / 2) / ((X[i_iter] + X[i_iter - 1]) / 2)) * (Y[i_iter] + q1[i_iter] / 2) + ((X[i_iter] + X[i_iter - 1]) / 2) * igrek_sht((PHI[i_iter] + PHI[i_iter - 1]) / 2) / ((X[i_iter] + X[i_iter - 1]) / 2)) q2[i_iter] = h[i_iter] * (Z[i_iter] + k1[i_iter] / 2) k3[i_iter] = h[i_iter] * const * ( integral_sht_1_2(PHI_2N[2 * i_iter - 1] / X[i_iter]) * (Y[i_iter] + q2[i_iter] / 2) + X[i_iter] * igrek_sht(PHI_2N[2 * i_iter - 1] / X[i_iter])) #k3[i_iter] = h[i_iter] * const * (integral_sht_1_2(((PHI[i_iter] + PHI[i_iter - 1]) / 2) / ((X[i_iter] + X[i_iter - 1]) / 2)) * Y[i_iter] + q2[i_iter] / 2) + ((X[i_iter] + X[i_iter - 1]) / 2) * igrek_sht((PHI[i_iter] + PHI[i_iter - 1]) / 2) / ((X[i_iter] + X[i_iter - 1]) / 2)) q3[i_iter] = h[i_iter] * (Z[i_iter] + k2[i_iter] / 2) q4[i_iter] = h[i_iter] * (Z[i_iter] + k3[i_iter]) Y[i_iter - 1] = Y[i_iter] + (q1[i_iter] + 2 * q2[i_iter] + 2 * q3[i_iter] + q4[i_iter]) / 6 return Y
def delta_P(T, rho): HI = hi_function(T, rho) PHI = progonka(T, rho) return theta(T)**2 / (3 * math.pi**3) * (HI[N] * integral_1_2(PHI[N]) + igrek(PHI[N]))
import sympy from sympy import * import matplotlib.pyplot as plt from progonka import PHI import numpy as np T = 0.001 rho =1 N=50000 A = 196.96657 r0 = 1.388*(A/rho)**(1/3) X=[0]*(N+1) const = ((2)**(0.5))/((math.pi)**2) const_e = ((2*theta(T))**1.5)/(2*((math.pi)**2)) def Chem_potential_e(): return theta(T)*PHI[N] print(Chem_potential_e()) def x(): for i in range(1,N + 1): X[i] = (i / N) ** 2 x() X[0] = X[1]/2 H =[0]*(N+1) def setka(): for i in range(1, N + 1): H[i] = (i/N) setka() def int1_2(x):