validate_start_path=validate_start_path,
                weights_path=weights_path,
                var_filename=var_filename)

# model creation
model = Mod.get_model(filters=filters, le=learn_rate, decay=decay_rate)
weights_loaded = False
if load_weights:
    weights_loaded = Mod.load_weights()
if not weights_loaded:
    Mod.save_weights()
Mod.plot_loss(500)
Mod.check_performance(train_generator, times=check_perf_times)

callbacks = md.Callbacks(ModelClass=Mod,
                         save_modulo_epochs=save_modulo,
                         printDecay=printDecay,
                         collectLoss=collectLoss)

# go
if validate:
    Mod.validate(validateMode=mode,
                 preprocessFunc=validatePreprocessFunc,
                 draw=draw,
                 onlyWithMetric=onlyWithMetric,
                 onlyWithoutMetric=onlyWithoutMetric,
                 sumTimes=sumTimes)
else:
    for loop in range(total_ep):
        i = loop + 1
        print("ep:" + str(i))
Beispiel #2
0
    Mod = md.Models(rows, cols, mode=mode, channels=channels_in, show_function=show_function, read_func=read_function,
                validate_path_provider_func=validate_path_provider_func, validate_start_path=validate_start_path,
                weights_path=weights_path, var_filename=var_filename)

    # model creation
    model = Mod.get_model(filters=filters, le=learn_rate, decay=decay_rate)
    weights_loaded = False
    if load_weights:
        weights_loaded = Mod.load_weights()
    if not weights_loaded:
        Mod.save_weights()


    Mod.check_performance(train_generator, times=check_perf_times, metrics= metrics)

    callbacks = md.Callbacks(ModelClass=Mod, save_modulo_epochs=save_modulo, printDecay=printDecay, collectLoss=collectLoss, message='Model no.: '+str(j+1))
    # go
    if validate:
        results = Mod.validate(validateMode=mode, preprocessFunc=validatePreprocessFunc, draw=draw, onlyWithMetric=onlyWithMetric,
                     onlyWithoutMetric=onlyWithoutMetric, sumTimes=sumTimes, metrics=metrics, validTimes=6, validName='Zanik', weightsTimesValids=100)
        sum = list(map(add, sum, results))
    else:
        for loop in range(total_ep):
            i = loop + 1
            print("ep:" + str(i))

            model.fit_generator(train_generator, steps_per_epoch=steps, epochs=ep, callbacks=[callbacks])

            if i % loop_modulo == 0:
                Mod.check_performance(train_generator, times=check_perf_times_in_loop)