def sample_configurations(configuration_space: ConfigurationSpace,
                          sample_size: int,
                          historical_configs: List[Configuration],
                          seed=1):
    configuration_space.seed(seed)
    result = []
    sample_cnt = 0
    if len(historical_configs) == 0:
        result.append(configuration_space.get_default_configuration())

    while len(result) < sample_size:
        config = configuration_space.sample_configuration(1)
        if config not in result and config not in historical_configs:
            result.append(config)
        sample_cnt += 1
        if sample_cnt > 50 * sample_size:
            break

    # if len(result) == 0:
    #     hist_num = len(historical_configs)
    #     if hist_num > sample_size:
    #         idxs = random.sample(range(len(historical_configs)), sample_size)
    #         result = [historical_configs[idx] for idx in idxs]
    #     else:
    #         result = historical_configs.copy()
    return result
Beispiel #2
0
    def _get_configuration_space(self) -> ConfigurationSpace:
        """Get the configuration space for the random forest.

        Returns
        -------
        ConfigurationSpace
        """
        cfg = ConfigurationSpace()
        cfg.seed(int(self.rs.randint(0, 1000)))

        num_trees = Constant("num_trees", value=N_TREES)
        bootstrap = CategoricalHyperparameter(
            "do_bootstrapping",
            choices=(self.bootstrap, ),
            default_value=self.bootstrap,
        )
        max_feats = CategoricalHyperparameter("max_features",
                                              choices=(3 / 6, 4 / 6, 5 / 6, 1),
                                              default_value=1)
        min_split = UniformIntegerHyperparameter("min_samples_to_split",
                                                 lower=1,
                                                 upper=10,
                                                 default_value=2)
        min_leavs = UniformIntegerHyperparameter("min_samples_in_leaf",
                                                 lower=1,
                                                 upper=10,
                                                 default_value=1)
        cfg.add_hyperparameters(
            [num_trees, bootstrap, max_feats, min_split, min_leavs])
        return cfg
Beispiel #3
0
def get_random_initial_configs(shps: ConfigurationSpace,
                               n_configs,
                               random_state=42) -> List[Configuration]:
    None_name = "None:NoneType"
    shps = deepcopy(shps)
    shps.seed(random_state)
    for config in shps.get_hyperparameters():
        name: str = config.name
        if name.startswith(PHASE1) and name.endswith("__choice__") and (
                None_name in config.choices):  # fixme 重构之后 None_name是不是改变了?
            config.default_value = None_name

    model_choice = shps.get_hyperparameter(f"{PHASE2}:__choice__")
    result = []
    for choice in model_choice.choices:
        cur_phps = deepcopy(shps)
        cur_phps.get_hyperparameter(
            f"{PHASE2}:__choice__").default_value = choice
        default = cur_phps.get_default_configuration()
        result.append(default)
    if len(result) < n_configs:
        result.extend(shps.sample_configuration(n_configs - len(result)))
    elif len(result) > n_configs:
        result = random.sample(result, n_configs)
    return result
Beispiel #4
0
def get_random_initial_configs(shps: ConfigurationSpace,
                               n_configs,
                               random_state=42) -> List[Configuration]:
    shps = deepcopy(shps)
    shps.seed(random_state)
    results = shps.sample_configuration(n_configs)
    if not isinstance(results, list):
        results = [results]
    return results
def main():
    for synthetic_function_cls in synthetic_functions:
        meta_info = synthetic_function_cls.get_meta_information()
        if "num_function_evals" in meta_info:
            max_iter = meta_info["num_function_evals"]
        else:
            max_iter = 200
        # 构造超参空间
        config_space = ConfigurationSpace()
        config_space.generate_all_continuous_from_bounds(
            synthetic_function_cls.get_meta_information()['bounds'])
        synthetic_function = synthetic_function_cls()

        # 定义目标函数
        def evaluation(config: dict):
            config = Configuration(config_space, values=config)
            return synthetic_function.objective_function(config)["function_value"] - \
                   synthetic_function.get_meta_information()["f_opt"]

        # 对experiment_param的删除等操作放在存储后面
        res = pd.DataFrame(columns=[f"trial-{i}" for i in range(10)],
                           index=range(max_iter))
        for trial in range(10):
            random_state = 50 + trial * 10
            # 设置超参空间的随机种子(会影响后面的采样)
            config_space.seed(random_state)
            print("==========================")
            print(f"= Trial -{trial:01d}-               =")
            print("==========================")
            print('iter |  loss    | config origin')
            print('----------------------------')
            cg = SamplingSortOptimizer(config_space, [1],
                                       min_points_in_model=25,
                                       n_samples=2500)
            loss = np.inf
            for ix in range(max_iter):
                config, config_info = cg.get_config(1)
                cur_loss = evaluation(config)
                loss = min(loss, cur_loss)
                print(f" {ix:03d}   {loss:.4f}    {config_info.get('origin')}")
                job = Job("")
                job.result = {"loss": cur_loss}
                job.kwargs = {
                    "budget": 1,
                    "config": config,
                    "config_info": config_info
                }
                cg.new_result(job)
                res.loc[ix, f"trial-{trial}"] = cur_loss
        res = raw2min(res)
        m = res.mean(1)
        s = res.std(1)
        name = synthetic_function.get_meta_information()["name"]
        final_result[name] = {"mean": m.tolist(), "std": s.tolist()}
    Path("EETPE.json").write_text(json.dumps(final_result))
Beispiel #6
0
 def _test_random_neigbor(self, hp):
     cs = ConfigurationSpace()
     if not isinstance(hp, list):
         hp = [hp]
     for hp_ in hp:
         cs.add_hyperparameter(hp_)
     cs.seed(1)
     config = cs.sample_configuration()
     for i in range(100):
         new_config = get_random_neighbor(config, i)
         self.assertNotEqual(config, new_config)
Beispiel #7
0
 def _test_random_neigbor(self, hp):
     cs = ConfigurationSpace()
     if not isinstance(hp, list):
         hp = [hp]
     for hp_ in hp:
         cs.add_hyperparameter(hp_)
     cs.seed(1)
     config = cs.sample_configuration()
     for i in range(100):
         new_config = get_random_neighbor(config, i)
         self.assertNotEqual(config, new_config)
Beispiel #8
0
    def test_sample_configuration(self):
        cs = ConfigurationSpace()
        hp1 = CategoricalHyperparameter("parent", [0, 1])
        cs.add_hyperparameter(hp1)
        hp2 = UniformIntegerHyperparameter("child", 0, 10)
        cs.add_hyperparameter(hp2)
        cond1 = EqualsCondition(hp2, hp1, 0)
        cs.add_condition(cond1)
        # This automatically checks the configuration!
        Configuration(cs, dict(parent=0, child=5))

        # and now for something more complicated
        cs = ConfigurationSpace(seed=1)
        hp1 = CategoricalHyperparameter("input1", [0, 1])
        cs.add_hyperparameter(hp1)
        hp2 = CategoricalHyperparameter("input2", [0, 1])
        cs.add_hyperparameter(hp2)
        hp3 = CategoricalHyperparameter("input3", [0, 1])
        cs.add_hyperparameter(hp3)
        hp4 = CategoricalHyperparameter("input4", [0, 1])
        cs.add_hyperparameter(hp4)
        hp5 = CategoricalHyperparameter("input5", [0, 1])
        cs.add_hyperparameter(hp5)
        hp6 = Constant("AND", "True")
        cs.add_hyperparameter(hp6)

        cond1 = EqualsCondition(hp6, hp1, 1)
        cond2 = NotEqualsCondition(hp6, hp2, 1)
        cond3 = InCondition(hp6, hp3, [1])
        cond4 = EqualsCondition(hp5, hp3, 1)
        cond5 = EqualsCondition(hp4, hp5, 1)
        cond6 = EqualsCondition(hp6, hp4, 1)
        cond7 = EqualsCondition(hp6, hp5, 1)

        conj1 = AndConjunction(cond1, cond2)
        conj2 = OrConjunction(conj1, cond3)
        conj3 = AndConjunction(conj2, cond6, cond7)
        cs.add_condition(cond4)
        cs.add_condition(cond5)
        cs.add_condition(conj3)

        samples = []
        for i in range(5):
            cs.seed(1)
            samples.append([])
            for j in range(100):
                sample = cs.sample_configuration()
                samples[-1].append(sample)

            if i > 0:
                for j in range(100):
                    self.assertEqual(samples[-1][j], samples[-2][j])
    def test_sample_configuration(self):
        cs = ConfigurationSpace()
        hp1 = CategoricalHyperparameter("parent", [0, 1])
        cs.add_hyperparameter(hp1)
        hp2 = UniformIntegerHyperparameter("child", 0, 10)
        cs.add_hyperparameter(hp2)
        cond1 = EqualsCondition(hp2, hp1, 0)
        cs.add_condition(cond1)
        # This automatically checks the configuration!
        Configuration(cs, dict(parent=0, child=5))

        # and now for something more complicated
        cs = ConfigurationSpace(seed=1)
        hp1 = CategoricalHyperparameter("input1", [0, 1])
        cs.add_hyperparameter(hp1)
        hp2 = CategoricalHyperparameter("input2", [0, 1])
        cs.add_hyperparameter(hp2)
        hp3 = CategoricalHyperparameter("input3", [0, 1])
        cs.add_hyperparameter(hp3)
        hp4 = CategoricalHyperparameter("input4", [0, 1])
        cs.add_hyperparameter(hp4)
        hp5 = CategoricalHyperparameter("input5", [0, 1])
        cs.add_hyperparameter(hp5)
        hp6 = Constant("AND", "True")
        cs.add_hyperparameter(hp6)

        cond1 = EqualsCondition(hp6, hp1, 1)
        cond2 = NotEqualsCondition(hp6, hp2, 1)
        cond3 = InCondition(hp6, hp3, [1])
        cond4 = EqualsCondition(hp5, hp3, 1)
        cond5 = EqualsCondition(hp4, hp5, 1)
        cond6 = EqualsCondition(hp6, hp4, 1)
        cond7 = EqualsCondition(hp6, hp5, 1)

        conj1 = AndConjunction(cond1, cond2)
        conj2 = OrConjunction(conj1, cond3)
        conj3 = AndConjunction(conj2, cond6, cond7)
        cs.add_condition(cond4)
        cs.add_condition(cond5)
        cs.add_condition(conj3)

        samples = []
        for i in range(5):
            cs.seed(1)
            samples.append([])
            for j in range(100):
                sample = cs.sample_configuration()
                samples[-1].append(sample)

            if i > 0:
                for j in range(100):
                    self.assertEqual(samples[-1][j], samples[-2][j])
def main():
    for synthetic_function_cls in synthetic_functions:
        meta_info = synthetic_function_cls.get_meta_information()
        if "num_function_evals" in meta_info:
            max_iter = meta_info["num_function_evals"]
        else:
            max_iter = base_max_iter
        # 构造超参空间
        config_space = ConfigurationSpace()
        config_space.generate_all_continuous_from_bounds(
            synthetic_function_cls.get_meta_information()['bounds'])
        synthetic_function = synthetic_function_cls()
        space = CS2HyperoptSpace(config_space)

        # 定义目标函数
        def evaluation(config: dict):
            config = Configuration(config_space, values=config)
            return synthetic_function.objective_function(config)["function_value"] - \
                   synthetic_function.get_meta_information()["f_opt"]

        # 对experiment_param的删除等操作放在存储后面
        res = pd.DataFrame(columns=[f"trial-{i}" for i in range(repetitions)],
                           index=range(max_iter))
        for trial in range(repetitions):
            random_state = base_random_state + trial * 10
            # 设置超参空间的随机种子(会影响后面的采样)
            config_space.seed(random_state)
            trials = Trials()
            best = fmin(
                evaluation,
                space,
                algo=partial(tpe.suggest, n_startup_jobs=20),
                max_evals=max_iter,
                rstate=np.random.RandomState(random_state),
                trials=trials,
            )
            losses = trials.losses()
            res[f"trial-{trial}"] = losses
        res = raw2min(res)
        m = res.mean(1)
        s = res.std(1)
        name = synthetic_function.get_meta_information()["name"]
        final_result[name] = {"mean": m.tolist(), "std": s.tolist()}
    Path("hyperopt.json").write_text(json.dumps(final_result))
Beispiel #11
0
    def _test_get_one_exchange_neighbourhood(self, hp):
        cs = ConfigurationSpace()
        num_neighbors = 0
        if not isinstance(hp, list):
            hp = [hp]
        for hp_ in hp:
            cs.add_hyperparameter(hp_)
            if np.isinf(hp_.get_num_neighbors()):
                num_neighbors += 4
            else:
                num_neighbors += hp_.get_num_neighbors()

        cs.seed(1)
        config = cs.get_default_configuration()
        all_neighbors = []
        for i in range(100):
            neighborhood = get_one_exchange_neighbourhood(config, i)
            for new_config in neighborhood:
                self.assertNotEqual(config, new_config)
                all_neighbors.append(new_config)

        return all_neighbors
Beispiel #12
0
    def _test_get_one_exchange_neighbourhood(self, hp):
        cs = ConfigurationSpace()
        num_neighbors = 0
        if not isinstance(hp, list):
            hp = [hp]
        for hp_ in hp:
            cs.add_hyperparameter(hp_)
            if np.isinf(hp_.get_num_neighbors()):
                num_neighbors += 4
            else:
                num_neighbors += hp_.get_num_neighbors()

        cs.seed(1)
        config = cs.get_default_configuration()
        all_neighbors = []
        for i in range(100):
            neighborhood = get_one_exchange_neighbourhood(config, i)
            for new_config in neighborhood:
                self.assertNotEqual(config, new_config)
                all_neighbors.append(new_config)

        return all_neighbors