Beispiel #1
0
 def inverse(self):
     g, x, y = self.element.egcd(self.modulus)
     if g.degree() != 0:
         assert False
     else:
         # We can receive any unit (i.e., polynomial of degree 0) as gcd. In this case we have to adjust the result by multiplying with the inverse of the gcd.
         return self.newElement(x * modinv(g.coeffs[0], self.base))
Beispiel #2
0
def solve():
    N = 4966306421059967
    P = 73176001
    Q = 67867967
    E = 65537
    assert N == P * Q
    D = modinv(E, (P - 1) * (Q - 1))

    key = RSA.construct((N, E, D, P, Q))
    return key.exportKey().decode('ascii')
def sign(C, sk, msg):
	ctx = sha256()
	ctx.update(msg.encode())
	k = int(ctx.hexdigest(), 16)

	ctx = sha512()
	ctx.update(msg.encode())
	h = int(ctx.hexdigest(), 16)

	P = k * C.G
	r = P.x
	assert r > 0, "Error: cannot sign this message."

	s = (modinv(k, C.q) * (h + sk * r)) % C.q
	assert s > 0, "Error: cannot sign this message."

	return (r, s)
Beispiel #4
0
    def polyLongDiv(self, rhs):
        assert isinstance(rhs, ZpXElement)
        assert self.p == rhs.p, "Polynomials must be from the same ring."
        assert rhs.degree() > -1

        remainder = self
        quotient = self.newZero()
        divisorCoeff, divisorDegree = rhs.leadingMonomial()
        while remainder.degree() >= rhs.degree():
            remainderCoeff, remainderDegree = remainder.leadingMonomial()
            quotLeading = self.newMonomial(
                remainderCoeff * modinv(divisorCoeff, self.p),
                remainderDegree - divisorDegree)
            quotient = quotient + quotLeading
            remainder = remainder - rhs * quotLeading

        return quotient, remainder
Beispiel #5
0
def solve():
    C = 12348446374818124785047003483520927723463037176164584182534831412133180628481657983543696351026847573095962444977455917028098119080577417044024579966437124155634016811401377813838933094471740535056528617449150832316250210717642685426014874295549265720543891802958288398542235894670411933149625284652440953413212310794688880607583457638169630078
    N = 73777733563828426821166743687859698789401296904268065723223154794019196925155447471863968833565501516440592954626981887392525580215103640010829661360292651828071519332853318312581688446978063704198253456823934612199636980854860094387209952373707617504589502368238807522652542968313964862007011712816434186396732995632792741802214139582180905539
    E = 65537

    # http://factordb.com/index.php?query=73777733563828426821166743687859698789401296904268065723223154794019196925155447471863968833565501516440592954626981887392525580215103640010829661360292651828071519332853318312581688446978063704198253456823934612199636980854860094387209952373707617504589502368238807522652542968313964862007011712816434186396732995632792741802214139582180905539
    # https://www.alpertron.com.ar/ECM.HTM
    factors = [
        8934727973, 8956702949, 9076526447, 9574275233, 10199411813,
        10356805913, 10362212843, 10760545121, 11457435851, 11484927547,
        11491735579, 11587612873, 12401035021, 12788765111, 12934352957,
        13460169187, 13479307337, 13701911497, 13904452147, 14231105627,
        14514834589, 14653558889, 15032846233, 15099169441, 15247982213,
        15273824113, 15429622627, 15485652857, 15604984711, 15945139799,
        16201532203, 16505224579, 16747163959, 17016067721
    ]

    reduced = N
    for x in factors:
        reduced //= x

    if reduced > 1:
        print('msieve -q', reduced)
        proc = subprocess.run(['msieve', '-q', str(reduced)],
                              stdout=subprocess.PIPE)
        s = proc.stdout.decode('ascii')
        trace(s)
        xs = re.findall(r'^p\d+: (\d+)', s, re.M)
        for x in xs:
            x = int(x)
            factors.append(x)
            reduced //= x

    assert reduced == 1

    th = reduce(operator.mul, (x - 1 for x in factors), 1)
    D = modinv(E, th)
    M = pow(C, D, N)

    flag = unh(f'{M:x}').decode('ascii')
    return flag
def verify(C, Q, msg, r, s):

	if Q.IDENTITY_ELEMENT == Q:
		return False

	if not C.is_point_on_curve((Q.x, Q.y)):
		return False

	if r < 1 or r > C.q - 1:
		return False

	if s < 1 or s > C.q - 1:
		return False

	ctx = sha512()
	ctx.update(msg.encode())
	h = int(ctx.hexdigest(), 16)

	s_inv = modinv(s, C.q)
	u = h * s_inv % C.q
	v = r * s_inv % C.q
	P = u * C.G + v * Q
	return r == P.x
Beispiel #7
0
def solve(host='2019shell1.picoctf.com:41419', port=None):
    flag_rx = re.compile(r'(picoCTF\{[^\}]+\})')

    with Interact(host, port) as ii:
        while True:
            try:
                ii.waitfor(r'#### NEW PROBLEM ####\n')
            except Interact.Error:
                trace(ii.buf)
                break

            data = dict()

            while True:
                s = ii.waitfor(r' : |FOLLOWING ####\n')
                if ':' in s:
                    na = s.split()[0]
                    xa = int(ii.waitfor(r'\n'))
                    data[na] = xa
                else:
                    wat = ii.waitfor(r'\n').strip()
                    break

            ii.waitfor(r'FEASIBLE\? \(Y\/N\):')

            wat = ''.join(sorted(data.keys())) + f'-{wat}'

            res = dict()

            if wat == 'pq-n':
                p, q = data['p'], data['q']
                res['n'] = p * q

            elif wat == 'np-q':
                n, p = data['n'], data['p']
                res['q'] = n // p

            elif wat == 'en-q':
                e, n = data['e'], data['n']
                decimal.getcontext().prec = len(str(n)) * 20
                a = n - (e + 1)
                b = a * a - 4 * n
                if b >= 0:
                    b = int(dec(b).sqrt())
                    q = (a - b) // 2
                    p = (a + b) // 2
                    if p * q == n:
                        res['q'] = q
                        res['p'] = p

            elif wat == 'pq-totient(n)':
                p, q = data['p'], data['q']
                e = (p - 1) * (q - 1)
                res['totient(n)'] = e

            elif wat == 'enplaintext-ciphertext':
                e, n, m = data['e'], data['n'], data['plaintext']
                c = pow(m, e, n)
                res['ciphertext'] = c

            elif wat == 'ciphertexten-plaintext':
                e, n, c = data['e'], data['n'], data['ciphertext']
                # m = pow(c, d, n)
                # res['plaintext'] = m

            elif wat == 'epq-d':
                e, p, q = data['e'], data['p'], data['q']
                d = modinv(e, (p - 1) * (q - 1))
                res['d'] = d

            elif wat == 'ciphertextenp-plaintext':
                e, n, p, c = data['e'], data['n'], data['p'], data[
                    'ciphertext']
                q = n // p
                d = modinv(e, (p - 1) * (q - 1))
                m = pow(c, d, n)
                res['plaintext'] = m

            else:
                raise Exception(wat)

            if res:
                ii.send('Y')
                ii.waitfor(r'WHAT YOU GOT\! ###\n')
                for _ in range(len(res)):
                    q = ii.waitfor(r': ').split(':')[0]
                    ii.send(str(res[q]))
            else:
                ii.send('N')

    x = res['plaintext']
    flag = binascii.unhexlify(f'{x:x}').decode('ascii')
    return flag
Beispiel #8
0
 def nthRoot(self, n):
     # TODO: This will not be part of the code we ship out.
     mOrder = self.base**self.power - 1
     assert gcd(mOrder, n) == 1
     return self**modinv(n, mOrder)