def MovePix(self, indiv, iPix, Flux, FluxWeighted=True, InReg=None):

        dx, dy = np.mgrid[-1:1:3 * 1j, -1:1:3 * 1j]
        Dx = np.int32(np.concatenate((dx.flatten()[0:4], dx.flatten()[5::])))
        Dy = np.int32(np.concatenate((dy.flatten()[0:4], dy.flatten()[5::])))

        # ArrayModel=self.PM.GiveModelArray(indiv)
        # ArrayModel_S=self.PM.ArrayToSubArray(indiv,Type="S")
        ArrayModel_S = indiv  # ArrayModel_S.reshape((1,ArrayModel_S.size))*np.ones((2,1))
        A = self.PM.ModelToSquareArray(ArrayModel_S,
                                       TypeInOut=("Parms", "Parms"),
                                       DomainOut="Parms")

        nf, npol, nx, nx = A.shape
        #A=np.mean(A,axis=0).reshape(1,npol,nx,nx)

        mapi, mapj = self.PM.SquareGrids["Parms"]["MappingIndexToXYPix"]
        i0, j0 = mapi[iPix], mapj[iPix]
        FluxWeighted = False
        if FluxWeighted:
            iAround = i0 + Dx
            jAround = j0 + Dy
            cx = ((iAround >= 0) & (iAround < nx))
            cy = ((jAround >= 0) & (jAround < nx))
            indIN = (cx & cy)
            iAround = iAround[indIN]
            jAround = jAround[indIN]
            sAround = A[0, 0, iAround, jAround].copy()
            #sInt=np.sum(sAround)
            #sAround[sAround==0]=sInt*0.05
            X = np.arange(iAround.size)
            DM = ClassDistMachine()
            DM.setRefSample(X, W=sAround, Ns=10)
            ind = int(round(DM.GiveSample(1)[0]))
            ind = np.max([0, ind])
            ind = np.min([ind, iAround.size - 1])
            ind = indIN[ind]

        # else:
        #     if InReg is None:
        #         reg=random.random()
        #     else:
        #         reg=InReg
        #     ind=int(reg*8)

        i1 = i0 + Dx[InReg]
        j1 = j0 + Dy[InReg]

        f0 = Flux  #alpha*A[0,0,i0,j0]

        _, _, nx, ny = A.shape
        condx = ((i1 > 0) & (i1 < nx))
        condy = ((j1 > 0) & (j1 < ny))
        if condx & condy:
            A[0, 0, i1, j1] += f0
            A[0, 0, i0, j0] -= f0
            AParm = self.PM.SquareArrayToModel(A, TypeInOut=("Parms", "Parms"))

            ArrayModel_S.flat[:] = AParm.flat[:]
        return indiv
Beispiel #2
0
 def GiveCompacity(self,S):
     DM=ClassDistMachine()
     #S.fill(1)
     #S[0]=100
     DM.setRefSample(np.arange(S.size),W=np.sort(S),Ns=100,xmm=[0,S.size-1])#,W=sAround,Ns=10)
     #DM.setRefSample(S)#,W=sAround,Ns=10)
     xs,ys=DM.xyCumulD
     dx=xs[1]-xs[0]
     I=2.*(S.size-np.sum(ys)*dx)/S.size-1.
     return I
Beispiel #3
0
def test():
    import DDFacet.ToolsDir.Gaussian
    _, _, PSF = DDFacet.ToolsDir.Gaussian.Gaussian(10, 311, 1.)
    #PSF.fill(1.)

    #import scipy.signal
    #PP=scipy.signal.fftconvolve(PSF,PSF, mode='same')

    #print Fact
    import pylab
    pylab.clf()
    pylab.imshow(PSF, interpolation="nearest")
    pylab.colorbar()
    pylab.draw()
    pylab.show(False)
    pylab.pause(0.1)

    Dirty = np.zeros_like(PSF)
    nx, _ = Dirty.shape
    Dirty[nx / 2, nx / 2 + 10] += 2.
    Dirty[nx / 2 + 10, nx / 2 + 10] += 2.
    Dirty = np.random.randn(*(Dirty.shape))

    PSF = PSF.reshape((1, 1, nx, nx)) * np.ones((2, 1, 1, 1))
    Dirty = Dirty.reshape((1, 1, nx, nx)) * np.ones((2, 1, 1, 1))
    Dirty[1, :, :, :] = Dirty[0, :, :, :] * 2
    x, y = np.mgrid[0:nx, 0:nx]
    dx = 10
    nc = nx / 2
    x = x[nc - dx:nc + dx, nc - dx:nc + dx].flatten()
    y = y[nc - dx:nc + dx, nc - dx:nc + dx].flatten()
    ListPixParms = [(x[i], y[i]) for i in range(x.size)]
    x, y = np.mgrid[0:nx, 0:nx]

    dx = 10
    x = x[nc - dx:nc + dx, nc - dx:nc + dx].flatten()
    y = y[nc - dx:nc + dx, nc - dx:nc + dx].flatten()
    ListPixData = [(x[i], y[i]) for i in range(x.size)]
    CC = ClassConvMachine(PSF, ListPixParms, ListPixData, "Matrix")

    NFreqBands, _, _, _ = Dirty.shape
    NPixListParms = len(ListPixParms)
    NPixListData = len(ListPixData)
    Array = np.zeros((NFreqBands, 1, NPixListParms), np.float32)
    x0, y0 = np.array(ListPixParms).T
    for iBand in range(NFreqBands):
        Array[iBand, 0, :] = Dirty[iBand, 0, x0, y0]

    Array = Array.reshape((NFreqBands, NPixListParms))

    import pylab

    Lchi0 = []
    Lchi1 = []

    NTries = 5000
    ArrKeep0 = np.zeros((NTries, NPixListParms), Array.dtype)
    ArrKeep1 = np.zeros((NTries, NPixListParms), Array.dtype)

    for i in range(NTries):
        Array = np.random.randn(*Array.shape)
        #T=ClassTimeIt.ClassTimeIt()
        chi0 = np.sum(Array**2)
        Lchi0.append(chi0)
        ConvArray0 = CC.Convolve(Array)
        chi1 = np.sum(ConvArray0**2)
        #T.timeit("0")
        #ConvArray1=CC.Convolve(Array,ConvMode="Vector").ravel()
        #T.timeit("1")
        #r=chi1/chi0
        #print "%f -> %f [%r]"%(chi0,chi1,r)
        NChan, _, NN = ConvArray0.shape
        NN = int(np.sqrt(NN))
        ArrKeep0[i] = Array[0].ravel()
        ArrKeep1[i] = ConvArray0[0].ravel()
        # pylab.clf()
        # pylab.imshow(ConvArray0.reshape((2,NN,NN))[0],interpolation="nearest")
        # pylab.draw()
        # pylab.show(False)
        # pylab.pause(0.1)

        Lchi1.append(chi1)
        #print np.var(Array),np.var(ConvArray0)/Fact

    Fact = CC.NormData[0]
    print np.median(np.std(ArrKeep0, axis=0)**2)
    print np.median(np.std(ArrKeep1, axis=0)**2 / Fact)
    return

    from scipy.stats import chi2
    from DDFacet.ToolsDir.GeneDist import ClassDistMachine
    DM = ClassDistMachine()

    rv = chi2(Array.size)
    x = np.linspace(0, 2 * rv.moment(1), 1000)
    P = rv.cdf(x)
    pylab.clf()
    pylab.subplot(2, 1, 1)
    #yd,xe=pylab.histogram(Lchi0,bins=100,normed=True)
    #xd=(xe[1::]+xe[0:-1])/2.
    #yd/=np.sum(yd)
    xd, yd = DM.giveCumulDist(np.array(Lchi0), Ns=100)
    #dx=xd[1]-xd[0]
    #yd/=dx
    pylab.plot(xd, yd)
    pylab.plot(x, P)
    pylab.xlim(0, 1600)
    pylab.subplot(2, 1, 2)
    xd, yd = DM.giveCumulDist(np.array(Lchi1), Ns=20)
    # yd,xe=pylab.histogram(Lchi1,bins=100,normed=True)
    # xd=(xe[1::]+xe[0:-1])/2.
    # dx=xd[1]-xd[0]
    # yd/=np.sum(yd)
    # yd/=dx
    print np.mean(Lchi1) / Fact
    print np.mean(Lchi0)
    # #pylab.xlim(0,800)
    # #pylab.hist(Lchi1,bins=100)

    import scipy.interpolate
    cdf = scipy.interpolate.interp1d(xd, yd, "cubic")
    x = np.linspace(xd.min(), xd.max(), 1000)
    #pylab.plot(x,cdf(x),ls="",marker=".")
    #pylab.plot(xd,yd,ls="",marker="s")

    y = cdf(x)
    x, y = xd, yd
    y = y[1::] - y[0:-1]
    x = (x[1::] + x[0:-1]) / 2.
    pylab.plot(x, y, ls="", marker=".")

    #pylab.xlim(0,1600)
    pylab.draw()
    pylab.show(False)

    # import pylab
    # pylab.clf()
    # #pylab.plot(ConvArray0.ravel())
    # pylab.imshow(PSF[0,0])
    # #pylab.plot(ConvArray1)
    # #pylab.plot(ConvArray1-ConvArray0)
    # pylab.draw()
    # pylab.show(False)

    stop
Beispiel #4
0
 def __init__(self, ConvMachine):
     self.ConvMachine = ConvMachine
     self.DM = ClassDistMachine()