def __init__(self, name):
     self.app = Flask(name)
     self.app.add_url_rule("/api/state", "api/state",
                           self._wrap_endpoint(ChessServer.serve_state))
     self.app.add_url_rule("/api/new", "api/new",
                           self._wrap_endpoint(ChessServer.serve_new_game))
     self.app.add_url_rule("/api/move", "api/move",
                           self._wrap_endpoint(ChessServer.serve_move))
     self.app.add_url_rule("/", "serve_client_r",
                           self._wrap_endpoint(ChessServer.serve_client))
     self.app.add_url_rule("/<path:path>", "serve_client",
                           self._wrap_endpoint(ChessServer.serve_client))
     self._gamestate = GameState()
     net = NeuralNetAPI()
     # Loading network
     player_agents = {
         "raw_net":
         RawNetAgent(net),
         "mcts":
         MCTSAgent(net,
                   virtual_loss=3,
                   threads=BATCH_SIZE,
                   cpuct=CPUCT,
                   dirichlet_epsilon=DIRICHLET_EPSILON),
     }
     self.agent = player_agents["raw_net"]  # Setting up agent
Beispiel #2
0
    def _run_single_playout(self, parent_node: Node, pipe_id=0, depth=1, chosen_nodes=None):
        """
        This function works recursively until a leaf or terminal node is reached.
        It ends by back-propagating the value of the new expanded node or by propagating the value of a terminal state.

        :param state: Current game-state for the evaluation. This state differs between the treads
        :param parent_node: Current parent-node of the selected node. In the first  expansion this is the root node.
        :param depth: Current depth for the evaluation. Depth is increased by 1 for every recursive call
        :param chosen_nodes: List of moves which have been taken in the current path.
                        For each selected child node this list is expanded by one move recursively.
        :param chosen_nodes: List of all nodes that this thread has explored with respect to the root node
        :return: -value: The inverse value prediction of the current board state. The flipping by -1 each turn is needed
                        because the point of view changes each half-move
                depth: Current depth reach by this evaluation
                mv_list: List of moves which have been selected
        """
        # Probably is better to be refactored
        # Too many arguments (6/5) - Too many local variables (27/15) - Too many branches (28/12) -
        # Too many statements (86/50)
        if chosen_nodes is None:  # select a legal move on the chess board
            chosen_nodes = []
        node, move, child_idx = self._select_node(parent_node)

        if move is None:
            raise Exception("Illegal tree setup. A 'None' move was selected which shouldn't be possible")
        # update the visit counts to this node
        # temporarily reduce the attraction of this node by applying a virtual loss /
        # the effect of virtual loss will be undone if the playout is over
        parent_node.apply_virtual_loss_to_child(child_idx, self.virtual_loss)

        # append the selected move to the move list
        chosen_nodes.append(child_idx)  # append the chosen child idx to the chosen_nodes list

        if node is None:
            state = GameState(deepcopy(parent_node.board))  # get the board from the parent node
            state.apply_move(move)  # apply the selected move on the board

            # get the transposition-key which is used as an identifier for the board positions in the look-up table
            transposition_key = state.get_transposition_key()
            # check if the addressed fen exist in the look-up table
            # note: It's important to use also the halfmove-counter here, otherwise the system can create an infinite
            # feed-back-loop
            key = transposition_key + (state.get_fullmove_number(),)

            if self.use_transposition_table and key in self.node_lookup:

                node = self.node_lookup[key]  # get the node from the look-up list

                # get the prior value from the leaf node which has already been expanded
                value = node.initial_value

                # clip the visit nodes for all nodes in the search tree except the director opp. move
                clip_low_visit = self.use_pruning

                new_node = Node(
                    node.board,
                    value,
                    node.policy_prob,
                    node.legal_moves,
                    node.is_leaf,
                    key,
                    clip_low_visit,
                )  # create a new node

                with parent_node.lock:
                    parent_node.child_nodes[child_idx] = new_node  # add the new node to its parent

            else:
                # expand and evaluate the new board state (the node wasn't found in the look-up table)
                # its value will be back-propagated through the tree and flipped after every layer
                my_pipe = self.my_pipe_endings[pipe_id]  # receive a free available pipe

                if self.send_batches:
                    my_pipe.send(state.get_state_planes())
                    # this pipe waits for the predictions of the network inference service
                    [value, policy_vec] = my_pipe.recv()
                else:
                    state_planes = state.get_state_planes()
                    self.batch_state_planes[pipe_id] = state_planes
                    my_pipe.send(pipe_id)
                    result_channel = my_pipe.recv()
                    value = np.array(self.batch_value_results[result_channel])
                    policy_vec = np.array(self.batch_policy_results[result_channel])

                is_leaf = is_won = False  # initialize is_leaf by default to false and check if the game is won
                # check if the current player has won the game
                # (we don't need to check for is_lost() because the game is already over
                #  if the current player checkmated his opponent)
                if state.is_check():
                    if state.is_loss():
                        is_won = True

                # needed for e.g. atomic because the king explodes and is not in check mate anymore
                if state.is_variant_loss():
                    is_won = True

                if is_won:
                    value = -1
                    is_leaf = True
                    legal_moves = []
                    p_vec_small = None
                    # establish a mate in one connection in order to stop exploring different alternatives
                    parent_node.set_check_mate_node_idx(child_idx)
                # get the value from the leaf node (the current function is called recursively)
                # check if you can claim a draw - its assumed that the draw is always claimed
                elif (
                    self.can_claim_threefold_repetition(transposition_key, chosen_nodes)
                    or state.get_pythonchess_board().can_claim_fifty_moves() is True
                ):
                    value = 0
                    is_leaf = True
                    legal_moves = []
                    p_vec_small = None
                else:
                    legal_moves = state.get_legal_moves()  # get the current legal move of its board state

                    if not legal_moves:
                        # stalemate occurred which is very rare for crazyhouse
                        if state.uci_variant == "giveaway":
                            value = 1
                        else:
                            value = 0
                        is_leaf = True
                        legal_moves = []
                        p_vec_small = None
                        # raise Exception("No legal move is available for state: %s" % state)
                    else:
                        try:  # extract a sparse policy vector with normalized probabilities
                            p_vec_small = get_probs_of_move_list(
                                policy_vec, legal_moves, is_white_to_move=state.is_white_to_move(), normalize=True
                            )
                        except KeyError:
                            raise Exception("Key Error for state: %s" % state)

                # clip the visit nodes for all nodes in the search tree except the director opp. move
                clip_low_visit = self.use_pruning and depth != 1  # and depth > 4
                new_node = Node(
                    state.get_pythonchess_board(),
                    value,
                    p_vec_small,
                    legal_moves,
                    is_leaf,
                    transposition_key,
                    clip_low_visit,
                )  # create a new node

                if depth == 1:
                    # disable uncertain moves from being visited by giving them a very bad score
                    if not is_leaf and self.use_pruning:
                        if self.root_node_prior_policy[child_idx] < 1e-3 and value * -1 < self.root_node.initial_value:
                            with parent_node.lock:
                                value = 99

                    # for performance reasons only apply check enhancement on depth 1 for now
                    chess_board = state.get_pythonchess_board()
                    if self.enhance_checks:
                        self._enhance_checks(chess_board, legal_moves, p_vec_small)

                    if self.enhance_captures:
                        self._enhance_captures(chess_board, legal_moves, p_vec_small)

                if not self.use_pruning:
                    self.node_lookup[key] = new_node  # include a reference to the new node in the look-up table

                with parent_node.lock:
                    parent_node.child_nodes[child_idx] = new_node  # add the new node to its parent
        elif node.is_leaf:  # check if we have reached a leaf node
            value = node.initial_value
        else:
            # get the value from the leaf node (the current function is called recursively)
            value, depth, chosen_nodes = self._run_single_playout(node, pipe_id, depth + 1, chosen_nodes)
        # revert the virtual loss and apply the predicted value by the network to the node
        parent_node.revert_virtual_loss_and_update(child_idx, self.virtual_loss, -value)
        # invert the value prediction for the parent of the above node layer because the player's changes every turn
        return -value, depth, chosen_nodes
Beispiel #3
0
    def evaluate_board_state(self, state: GameState):  # Probably is better to be refactored
        """
        Analyzes the current board state. This is the main method which get called by the uci interface or analysis
        request.
        :param state: Actual game state to evaluate for the MCTS
        :return:
        """
        # Too many local variables (28/15) - Too many branches (25/12) - Too many statements (75/50)
        self.t_start_eval = time()  # store the time at which the search started

        if not self.net_pred_services[0].running:  # check if the net prediction service has already been started
            for net_pred_service in self.net_pred_services:  # start the prediction daemon thread
                net_pred_service.start()

        legal_moves = state.get_legal_moves()  # list of all possible legal move in the current board position

        if not legal_moves:  # consistency check
            raise Exception("The given board state has no legal move available")

        key = state.get_transposition_key() + (
            state.get_fullmove_number(),
        )  # check first if the the current tree can be reused

        if not self.use_pruning and key in self.node_lookup:
            chess_board = state.get_pythonchess_board()
            self.root_node = self.node_lookup[key]  # if key in self.node_lookup:
            if self.enhance_captures:
                self._enhance_captures(chess_board, legal_moves, self.root_node.policy_prob)
                # enhance checks for all direct child nodes
                for child_node in self.root_node.child_nodes:
                    if child_node:
                        self._enhance_captures(child_node.board, child_node.legal_moves, child_node.policy_prob)

            if self.enhance_checks:
                self._enhance_checks(chess_board, legal_moves, self.root_node.policy_prob)
                # enhance checks for all direct child nodes
                for child_node in self.root_node.child_nodes:
                    if child_node:
                        self._enhance_checks(child_node.board, child_node.legal_moves, child_node.policy_prob)

            logging.debug(
                "Reuse the search tree. Number of nodes in search tree: %d",
                self.root_node.nb_total_expanded_child_nodes,
            )
            self.total_nodes_pre_search = deepcopy(self.root_node.n_sum)
        else:
            logging.debug("Starting a brand new search tree...")
            self.root_node = None
            self.total_nodes_pre_search = 0

        if len(legal_moves) == 1:  # check for fast way out
            max_depth_reached = 1  # if there's only a single legal move you only must go 1 depth

            if self.root_node is None:
                # conduct all necessary steps for fastest way out
                self._expand_root_node_single_move(state, legal_moves)

            # increase the move time buffer
            # subtract half a second as a constant for possible delay
            self.time_buffer_ms += max(self.movetime_ms - 500, 0)
        else:
            if self.root_node is None:
                self._expand_root_node_multiple_moves(state, legal_moves)  # run a single expansion on the root node
            # opening guard
            if state.get_fullmove_number() <= self.opening_guard_moves:  # 100: #7: #10:
                self.root_node.q_value[self.root_node.policy_prob < 5e-2] = -9999
            # elif len(legal_moves) > 50:
            #    self.root_node.q_value[self.root_node.policy_prob < 1e-3] = -9999
            # conduct the mcts-search based on the given settings
            max_depth_reached = self._run_mcts_search(state)
            t_elapsed = time() - self.t_start_eval
            print("info string move overhead is %dms" % (t_elapsed * 1000 - self.movetime_ms))

        # receive the policy vector based on the MCTS search
        p_vec_small = self.root_node.get_mcts_policy(self.q_value_weight)  # , xth_n_max=xth_n_max, is_root=True)

        if self.use_future_q_values:
            # use q-future value to update the q-values of direct child nodes
            q_future, indices = self.get_last_q_values(min_nb_visits=5, max_depth=5) #25)
            # self.root_node.q_value = 0.5 * self.root_node.q_value + 0.5 * q_future
            # TODO: make this matrix vector form
            if max_depth_reached >= 5:
                for idx in indices:
                    self.root_node.q_value[idx] = min(self.root_node.q_value[idx], q_future[idx])
                p_vec_small = self.root_node.get_mcts_policy(self.q_value_weight)

        # if self.use_pruning is False:
        self.node_lookup[key] = self.root_node  # store the current root in the lookup table
        best_child_idx = p_vec_small.argmax()  # select the q-value according to the mcts best child value
        value = self.root_node.q_value[best_child_idx]
        # value = orig_q[best_child_idx]
        lst_best_moves, _ = self.get_calculated_line()
        str_moves = self._mv_list_to_str(lst_best_moves)
        node_searched = int(self.root_node.n_sum - self.total_nodes_pre_search)  # show the best calculated line
        time_e = time() - self.t_start_eval  # In uci the depth is given using half-moves notation also called plies

        if len(legal_moves) != len(p_vec_small):
            raise Exception(
                "Legal move list %s with length %s is incompatible to policy vector %s"
                " with shape %s for board state %s and nodes legal move list: %s"
                % (legal_moves, len(legal_moves), p_vec_small, p_vec_small.shape, state, self.root_node.legal_moves)
            )

        # define the remaining return variables
        centipawns = value_to_centipawn(value)
        depth = max_depth_reached
        nodes = node_searched
        time_elapsed_s = time_e * 1000

        # avoid division by 0
        if time_e > 0.0:
            nps = node_searched / time_e
        else:
            # return a high constant in otherwise
            nps = 999999999

        pv = str_moves
        if self.verbose:
            score = "score cp %d depth %d nodes %d time %d nps %d pv %s" % (
                centipawns,
                depth,
                nodes,
                time_elapsed_s,
                nps,
                pv,
            )
            logging.info("info string %s", score)
        return value, legal_moves, p_vec_small, centipawns, depth, nodes, time_elapsed_s, nps, pv
class ChessServer:
    """ Helper for handling the game server"""
    def __init__(self, name):
        self.app = Flask(name)
        self.app.add_url_rule("/api/state", "api/state",
                              self._wrap_endpoint(ChessServer.serve_state))
        self.app.add_url_rule("/api/new", "api/new",
                              self._wrap_endpoint(ChessServer.serve_new_game))
        self.app.add_url_rule("/api/move", "api/move",
                              self._wrap_endpoint(ChessServer.serve_move))
        self.app.add_url_rule("/", "serve_client_r",
                              self._wrap_endpoint(ChessServer.serve_client))
        self.app.add_url_rule("/<path:path>", "serve_client",
                              self._wrap_endpoint(ChessServer.serve_client))
        self._gamestate = GameState()
        net = NeuralNetAPI()
        # Loading network
        player_agents = {
            "raw_net":
            RawNetAgent(net),
            "mcts":
            MCTSAgent(net,
                      virtual_loss=3,
                      threads=BATCH_SIZE,
                      cpuct=CPUCT,
                      dirichlet_epsilon=DIRICHLET_EPSILON),
        }
        self.agent = player_agents["raw_net"]  # Setting up agent
        # self.agent = player_agents["mcts"]

    def _wrap_endpoint(self, func):
        """TODO: docstring"""
        def wrapper(kwargs):
            return func(self, **kwargs)

        return lambda **kwargs: wrapper(kwargs)

    def run(self):
        """ Run the flask server"""
        self.app.run()

    @staticmethod
    def serve_client(path=None):
        """Find the client server path"""
        if path is None:
            path = "index.html"
        return send_from_directory("./client", path)

    def serve_state(self):
        """TODO: docstring"""
        return self.serialize_game_state()

    def serve_new_game(self):
        """TODO: docstring"""
        logging.debug("staring new game()")
        self.perform_new_game()
        return self.serialize_game_state()

    def serve_move(self):
        """ Groups the move requests and data to the server and the response from it"""
        # read move data
        drop_piece = request.args.get("drop")
        from_square = request.args.get("from")
        to_square = request.args.get("to")
        promotion_piece = request.args.get("promotion")
        from_square_idx = get_square_index_from_name(from_square)
        to_square_idx = get_square_index_from_name(to_square)
        if (from_square_idx is None
                and drop_piece is None) or to_square_idx is None:
            return self.serialize_game_state("board name is invalid")

        promotion = drop = None

        if drop_piece:
            from_square_idx = to_square_idx
            if not drop_piece in chess.PIECE_SYMBOLS:
                return self.serialize_game_state("drop piece name is invalid")
            drop = chess.PIECE_SYMBOLS.index(drop_piece)

        if promotion_piece:
            if not promotion_piece in chess.PIECE_SYMBOLS:
                return self.serialize_game_state(
                    "promotion piece name is invalid")
            promotion = chess.PIECE_SYMBOLS.index(promotion_piece)

        move = chess.Move(from_square_idx, to_square_idx, promotion, drop)

        # perform move
        try:
            self.perform_move(move)
        except ValueError as err:
            logging.error("ValueError %s", err)
            return self.serialize_game_state(err.args[0])

        # calculate agent response
        if not self.perform_agent_move():
            return self.serialize_game_state("Black has no more moves to play",
                                             True)

        return self.serialize_game_state()

    def perform_new_game(self):
        """Initialize a new game on the server"""
        self._gamestate = GameState()

    def perform_move(self, move):
        """ Apply the move on the game and check if the legality of it"""
        logging.debug("perform_move(): %s", move)
        # check if move is valid
        if move not in list(self._gamestate.board.legal_moves):
            raise ValueError(
                "The given move %s is invalid for the current position" % move)
        self._gamestate.apply_move(move)
        if self._gamestate.is_loss():
            logging.debug("Checkmate")
            return False
        return None

    def perform_agent_move(self):
        """TODO: docstring"""
        if self._gamestate.is_loss():
            logging.debug("Checkmate")
            return False

        value, move, _, _ = self.agent.perform_action(self._gamestate)

        if not self._gamestate.is_white_to_move():
            value = -value

        logging.debug("Value %.4f", value)

        if move is None:
            logging.error("None move proposed!")
            return False

        self.perform_move(move)
        return True

    def serialize_game_state(self, message=None, finished=None):
        """ Encodes the game state to a .json file"""
        if message is None:
            message = ""

        board_str = "" + self._gamestate.board.__str__()
        pocket_str = "" + self._gamestate.board.pockets[1].__str__(
        ) + "|" + self._gamestate.board.pockets[0].__str__()
        state = {"board": board_str, "pocket": pocket_str, "message": message}
        if finished:
            state["finished"] = finished
        return json.dumps(state)
 def perform_new_game(self):
     """Initialize a new game on the server"""
     self._gamestate = GameState()