# TODO: fitting gm twice, wasteful
                    cont_samples = hgsampler.cont_samples
                    crv_idx = cond_g.Vc_idx[rv]
                    crv_marg_params = sampling_utils.fit_scalar_gm_from_samples(
                        cont_samples[:, crv_idx], K=num_gm_components_for_crv)
                    marg_logpdf = utils.get_scalar_gm_log_prob(
                        None, *crv_marg_params, get_fun=True)
                    margs[i] = marg_logpdf
            # save baseline
            baseline_mmap = mmap
            baseline_margs = margs
            marg_kls = np.zeros_like(mmap)
            cpu_time = wall_time = 0  # don't care

        elif algo_name == 'EPBP':
            bp = EPBP(g, n=20, proposal_approximation='simple')
            start_time = time.process_time()
            start_wall_time = time.time()
            bp.run(10, log_enable=False)
            cpu_time = time.process_time() - start_time
            wall_time = time.time() - start_wall_time

            for i, rv in enumerate(query_rvs):
                mmap[i] = bp.map(rv)
                # marg_logpdf = lambda x: bp.belief(x, rv, log_belief=True)  # probly slightly faster if not plotting
                marg_logpdf = utils.curry_epbp_belief(bp, rv, log_belief=True)
                margs[i] = marg_logpdf
                assert rv.domain_type[
                    0] == 'c', 'only looking at kl for cnode queries for now'
                # lb, ub = -np.inf, np.inf
                lb, ub = -np.inf, np.inf
            else:
                pred[key] = osi.map(
                    obs_rvs=obs_rvs,
                    query_rv=rvs_table[key])  # obs_rvs from the original graph
            err.append(abs(pred[key] - ans[key]))
    # print(pred)
    avg_err[name] = np.average(err) / num_test + avg_err.get(name, 0)
    max_err[name] = np.max(err) / num_test + max_err.get(name, 0)
    err_var[name] = np.average(err)**2 / num_test + err_var.get(name, 0)
    print(name, f'avg err {np.average(err)}')
    print(name, f'max err {np.max(err)}')

    run = False
    if run:
        name = 'EPBP'
        bp = EPBP(g, n=20)
        start_time = time.process_time()
        bp.run(15, log_enable=False)
        time_cost[name] = (time.process_time() -
                           start_time) / num_test + time_cost.get(name, 0)
        print(name, f'time {time.process_time() - start_time}')
        err = []
        for key in key_list:
            if key not in data:
                pred[key] = bp.map(rvs_table[key])
                err.append(abs(pred[key] - ans[key]))
        print(pred)
        avg_err[name] = np.average(err) / num_test + avg_err.get(name, 0)
        max_err[name] = np.max(err) / num_test + max_err.get(name, 0)
        err_var[name] = np.average(err)**2 / num_test + err_var.get(name, 0)
        print(name, f'avg err {np.average(err)}')
Beispiel #3
0
g.init_nb()

from C2FVarInference import VarInference

# np.random.seed(9)
vi = VarInference(g, num_mixtures=4, num_quadrature_points=8)

vi.run(200, lr=0.1)

print(vi.free_energy())

for rv in g.rvs:
    if rv.value is None:  # only test non-evidence nodes
        p = dict()
        for x in rv.domain.values:
            p[x] = vi.belief(x, rv)
        print(rv, p)

# EPBP inference
from EPBPLogVersion import EPBP

bp = EPBP(g, n=50, proposal_approximation='simple')
bp.run(20, log_enable=False)

for rv in g.rvs:
    if rv.value is None:  # only test non-evidence nodes
        p = dict()
        for x in rv.domain.values:
            p[x] = bp.belief(x, rv)
        print(rv, p)
Beispiel #4
0
key_list = list()
for p in range(100):
    key_list.append(('cancer', f'p{p}'))

num_test = 5

avg_diff = dict()
variance = dict()
time_cost = dict()

ans = dict()

name = 'EPBP'
res = np.zeros((len(key_list), num_test))
for j in range(num_test):
    bp = EPBP(g, n=10, proposal_approximation='simple')
    start_time = time.process_time()
    bp.run(10, log_enable=True)
    time_cost[name] = (time.process_time() -
                       start_time) / num_test + time_cost.get(name, 0)
    print(name, f'time {time.process_time() - start_time}')
    for i, key in enumerate(key_list):
        res[i, j] = bp.probability(0.8, 1, rvs_table[key])
for i, key in enumerate(key_list):
    ans[key] = np.average(res[i, :])
variance[name] = np.average(np.var(res, axis=1))
print(name, 'var', variance[name])

# save ans
ans_array = list()
for key in key_list:
Beispiel #5
0
    print('number of factors', len(g.factors))
    print('number of evidence', len(data))

    key_list = list()
    for y_ in Y:
        key_list.append(('A', y_))
    for x_ in X:
        if ('B', x_) not in data:
            key_list.append(('B', x_))

    ans = dict()

    name = 'EPBP'
    res = np.zeros((len(key_list), 1))
    for j in range(1):
        bp = EPBP(g, n=20, proposal_approximation='simple')
        start_time = time.process_time()
        bp.run(10, log_enable=False)
        time_cost[name] = (time.process_time() -
                           start_time) / 1 / num_test + time_cost.get(name, 0)
        print(name, f'time {time.process_time() - start_time}')
        for i, key in enumerate(key_list):
            res[i, j] = bp.map(rvs_table[key])
    for i, key in enumerate(key_list):
        ans[key] = np.average(res[i, :])
    for i, key in enumerate(key_list):
        res[i, :] -= ans[key]
    avg_diff[name] = np.average(np.average(
        abs(res), axis=1)) / num_test + avg_diff.get(name, 0)
    err_var[name] = np.average(np.average(
        res**2, axis=1)) / num_test + err_var.get(name, 0)
Beispiel #6
0
        lr = 5e-1
        # its = 1000
        its = 300
        # fix_mix_its = int(its * 0.1)
        fix_mix_its = int(its * 1.0)
        # fix_mix_its = 500
        logging_itv = 50
        obs_rvs = [v for v in g.rvs if v.value is not None]
        # cond = True
        cond = True
        if cond:
            cond_g.init_nb(
            )  # this will make cond_g rvs' .nb attributes consistent; OSI uses when defining obj

    if algo == 'EPBP':
        bp = EPBP(g, n=50, proposal_approximation='simple')
        print('number of vr', len(g.rvs))
        num_evidence = 0
        for rv in g.rvs:
            if rv.value is not None:
                num_evidence += 1
        print('number of evidence', num_evidence)

        start_time = time.process_time()
        bp.run(20, log_enable=False)
        time_cost.append(time.process_time() - start_time)
        print('time lapse', time.process_time() - start_time)

        for idx, rv in enumerate(rvs_table[t - 1]):
            result[idx, i] = bp.map(rv)
            baseline_margs = margs

        elif algo_name == 'GaBP':
            bp = GaBP(g)
            start_time = time.process_time()
            start_wall_time = time.time()
            bp.run(20, log_enable=False)
            cpu_time = time.process_time() - start_time
            wall_time = time.time() - start_wall_time
            for i, rv in enumerate(query_rvs):
                mmap[i] = bp.map(rv)
                belief_params = bp.get_belief_params(rv)
                margs[i] = utils.curry_normal_logpdf(*belief_params)

        elif algo_name == 'EPBP':
            bp = EPBP(g, n=50, proposal_approximation='simple')
            start_time = time.process_time()
            start_wall_time = time.time()
            bp.run(20, log_enable=False)
            cpu_time = time.process_time() - start_time
            wall_time = time.time() - start_wall_time

            for i, rv in enumerate(query_rvs):
                mmap[i] = bp.map(rv)
                # marg_logpdf = lambda x: bp.belief(x, rv, log_belief=True)  # probly slightly faster if not plotting
                marg_logpdf = utils.curry_epbp_belief(bp, rv, log_belief=True)
                margs[i] = marg_logpdf

        elif algo_name in ('OSI', 'LOSI', 'NPVI', 'LNPVI'):
            cond = True
            if cond:
Beispiel #8
0
    bp.run(15, c2f=0, log_enable=False)
    time_cost[name] = (time.process_time() -
                       start_time) / num_test + time_cost.get(name, 0)
    print(name, f'time {time.process_time() - start_time}')
    err = []
    for key in key_list:
        if key not in data:
            err.append(abs(bp.map(rvs_table[key]) - ans[key]))
    avg_err[name] = np.average(err) / num_test + avg_err.get(name, 0)
    max_err[name] = np.max(err) / num_test + max_err.get(name, 0)
    err_var[name] = np.average(err)**2 / num_test + err_var.get(name, 0)
    print(name, f'avg err {np.average(err)}')
    print(name, f'max err {np.max(err)}')

    name = 'EPBP'
    bp = EPBP(g, n=20)
    start_time = time.process_time()
    bp.run(15, log_enable=False)
    time_cost[name] = (time.process_time() -
                       start_time) / num_test + time_cost.get(name, 0)
    print(name, f'time {time.process_time() - start_time}')
    err = []
    for key in key_list:
        if key not in data:
            err.append(abs(bp.map(rvs_table[key]) - ans[key]))
    avg_err[name] = np.average(err) / num_test + avg_err.get(name, 0)
    max_err[name] = np.max(err) / num_test + max_err.get(name, 0)
    err_var[name] = np.average(err)**2 / num_test + err_var.get(name, 0)
    print(name, f'avg err {np.average(err)}')
    print(name, f'max err {np.max(err)}')
Beispiel #9
0
# vi.run(500, lr=0.1)
#
# print(vi.free_energy())
#
# for key, rv in sorted(rvs_table.items()):
#     if rv.value is None:  # only test non-evidence nodes
#         # p = dict()
#         # for x in rv.domain.values:
#         #     p[x] = osi.belief(x, rv)
#         # print(key, p)
#         print(key, vi.map(rv))

# EPBP inference
from EPBPLogVersion import EPBP

bp = EPBP(g, n=20, proposal_approximation='simple')
bp.run(20, log_enable=False)

for key, rv in sorted(rvs_table.items()):
    if rv.value is None:  # only test non-evidence nodes
        # p = dict()
        # for x in rv.domain.values:
        #     p[x] = bp.belief(x, rv)
        # print(key, p)
        print(key, bp.map(rv))

# GaBP inference
# from GaBP import GaBP
#
# bp = GaBP(g)
# bp.run(20, log_enable=False)
Beispiel #10
0
    for key, rv in rvs_table.items():
        if rv.value is None:  # only test non-evidence nodes
            print(rv, key, osi.map(obs_rvs=[], query_rv=rv))

    import matplotlib.pyplot as plt

    for key in record:
        plt.plot(record[key], label=key)
    plt.legend(loc='best')
    save_name = __file__.split('.py')[0]
    plt.savefig('%s.png' % save_name)

    # EPBP inference
    from EPBPLogVersion import EPBP

    bp = EPBP(g, n=50, proposal_approximation='simple')
    bp.run(30, log_enable=True)

    for key, rv in rvs_table.items():
        if rv.value is None:  # only test non-evidence nodes
            print(key, bp.map(rv))

else:
    K = 3
    lr = 1e-2
    its = 1
    import tensorflow as tf

    for T in [10, 20, 50, 100]:
        print('grad check, T =', T)
        utils.set_seed(seed)