Beispiel #1
0
    def add(self, E, selected=None, overlay=False):
        """Add ekin proj to plot"""

        total = len(E.datasets)
        if total == 0:
            return
        if selected == None:
            datasets = E.datasets
        else:
            datasets = self.getNames(selected, E)

        if len(datasets) > 25:
            print 'too many plots'
            datasets = datasets[:25]
        elif len(E.datasets) == 1:
            datasets = E.datasets[0]
        if len(datasets) == 0:
            datasets = E.datasets

        if overlay == True:
            plotopt = 3
            self.Opt.opts['legend'] = True
        else:
            plotopt = 2

        fr = Frame(self.pw)
        self.pw.add(fr)
        plotframe = PlotPanel(parent=fr, side=BOTTOM, tools=True)
        plotframe.setProject(E)
        plotframe.Opts.opts = self.Opt.opts
        plotframe.Opts.opts['title'] = E.name
        plotframe.Opts.opts['normalise'] = overlay
        plotframe.plotCurrent(datasets=datasets, plotoption=plotopt)
        self.plotframes[E.name] = plotframe
        return plotframe
Beispiel #2
0
    def add(self, E, selected=None, overlay=False):
        """Add ekin proj to plot"""
        
        total = len(E.datasets)
        if total == 0:
            return
        if selected == None:
            datasets = E.datasets
        else:
            datasets = self.getNames(selected, E)
            
        if len(datasets)>25:
            print 'too many plots'
            datasets = datasets[:25]
        elif len(E.datasets)==1:
            datasets = E.datasets[0]
        if len(datasets) == 0:
            datasets = E.datasets

        if overlay == True:
            plotopt = 3
            self.Opt.opts['legend'] = True
        else: plotopt = 2

        fr=Frame(self.pw)
        self.pw.add(fr)
        plotframe = PlotPanel(parent=fr, side=BOTTOM, tools=True)
        plotframe.setProject(E)
        plotframe.Opts.opts = self.Opt.opts
        plotframe.Opts.opts['title'] = E.name
        plotframe.Opts.opts['normalise']=overlay
        plotframe.plotCurrent(datasets=datasets, plotoption=plotopt)
        self.plotframes[E.name] = plotframe       
        return plotframe
Beispiel #3
0
class VantHoff(Plugin):
    """A plugin to do Van't Hoff Analysis of temperature melting curves"""
    """Author: Damien Farrell"""

    capabilities = ['gui','uses_sidepane']
    requires = ['pylab','numpy']
    menuentry = "Van't Hoff Analysis"

    gui_methods = {'getCSV': 'Import CSV',
                    'loadEkin':'Load Ekin Proj',
                    'saveEkin':'Save Ekin Proj',
                    'doAnalysis':"Do Analysis",
                    #'benchmark': 'Do Benchmark',
                    'close':'Close' }
    about = "A plugin to do Van't Hoff Analysis of temperature melting curves"
    R = 8.3144

    def __init__(self):
        self.path = os.path.expanduser("~")
        self.pltConfig()
        self.E = None
        return

    def main(self, parent):
        if parent==None:
            return
        self.parent = parent
        self.DB = parent.DB
        self.xydata = None
        self._doFrame()
        return

    def _doFrame(self):
        if 'uses_sidepane' in self.capabilities:
            self.mainwin = self.parent.createChildFrame(width=600)
        else:
            self.mainwin=Toplevel()
            self.mainwin.title(self.menuentry)
            self.mainwin.geometry('800x600+200+100')

        methods = self._getmethods()
        fr = Frame(self.mainwin)
        fr.pack(side=LEFT,fill=BOTH)
        methods = [m for m in methods if m[0] in self.gui_methods.keys()]
        self._createButtons(methods, fr)
        self.showDatasetSelector()
        self.doall = Pmw.RadioSelect(fr,
                buttontype = 'checkbutton',
                orient = 'horizontal',
                labelpos = 'w')
        self.doall.add('Process All')
        self.doall.pack()
        self.conversions = Pmw.RadioSelect(fr,
                buttontype = 'checkbutton',
                orient = 'horizontal',
                labelpos = 'w')
        self.conversions.add('Convert Celsius-Kelvin')
        self.conversions.pack()
        self.methods = Pmw.RadioSelect(fr,
                buttontype = 'checkbutton',
                orient = 'vertical',
                labelpos = 'w',
                label_text = 'Methods:')
        for m in ['method 1','method 2','method 3', 'method 4']:
            self.methods.add(m)
        self.methods.invoke('method 1')
        self.methods.pack()
        self.sm = Pmw.EntryField(fr,
                labelpos = 'w',
                value = 5,
                label_text = 'Smoothing:')
        self.sm.pack()
        self.tw = Pmw.EntryField(fr,
                labelpos = 'w',
                value = 60,
                label_text = 'Width of transition:')
        self.tw.pack()
        return

    def _getmethods(self):
        """Get a list of all available public methods"""
        import inspect
        mems = inspect.getmembers(self, inspect.ismethod)
        methods = [m for m in mems if not m[0].startswith('_')]
        return methods

    def _createButtons(self, methods, fr=None):
        """Dynamically create buttons for supplied methods, which is a tuple
            of (method name, label)"""
        for m in methods:
            b=Button(fr,text=self.gui_methods[m[0]],command=m[1])
            b.pack(side=TOP,fill=BOTH)
        return

    def close(self):
        self.mainwin.destroy()
        self.plotframe = None
        return

    def showDatasetSelector(self):
        if self.E==None:
            return
        if hasattr(self, 'dmenu'):
            self.dmenu.destroy()
        self.dmenu = Pmw.OptionMenu(self.mainwin,
                labelpos = 'w',
                label_text = 'Dataset:',
                items = sorted(self.E.datasets),
                command=self.showPreview,
                menubutton_width = 8)
        self.dmenu.pack(side=TOP,fill=BOTH)
        return

    def showPreview(self,event=None):
        if self.E == None:
            return
        if not hasattr(self, 'plotframe') or self.plotframe == None:
            from Ekin.Plotting import PlotPanel
            self.plotframe = PlotPanel(parent=self.mainwin, side=BOTTOM)
        self.plotframe.setProject(self.E)
        d = self.dmenu.getcurselection()
        self.plotframe.plotCurrent(d)
        #plt.close(1)
        return

    def getCSV(self):
        """Import a csv file"""
        self.E = EkinProject()
        from PEATDB.Ekin.IO import Importer
        importer = Importer(self,parent_win=self.mainwin)
        newdata = importer.import_multiple()
        if newdata == None: return
        for n in newdata.keys():
            self.E.insertDataset(newdata[n], n, update=None)
        print 'imported %s datasets' %len(self.E.datasets)
        self.showDatasetSelector()
        self.showPreview()
        return

    def loadEkin(self):
        """Load the ekin prj"""

        filename=tkFileDialog.askopenfilename(defaultextension='.ekinprj',
                                                  initialdir=os.getcwd(),
                                                  filetypes=[("ekinprj","*.ekinprj"),
                                                             ("All files","*.*")],
                                                  parent=self.mainwin)
        if not os.path.isfile(filename):
            return
        self.E = EkinProject()
        self.E.openProject(filename)
        self.showDatasetSelector()
        self.showPreview()
        return

    def saveEkin(self):
        """save proj"""
        if self.E != None:
            if self.E.filename == None:
                self.E.filename = tkFileDialog.asksaveasfilename(defaultextension='.ekinprj',
                                                          initialdir=os.getcwd(),
                                                          filetypes=[("ekinprj","*.ekinprj"),
                                                                     ("All files","*.*")],
                                                          parent=self.mainwin)

            self.E.saveProject()
            print 'saved ekin proj'
        return

    def doAnalysis(self):
        """Execute from GUI"""
        if self.E == None:
            return
        methods = self.methods.getcurselection()
        if 'Process All' in self.doall.getcurselection():
            self.doAll(methods=methods)
        else:
            if 'method 1' in methods:
                self.fitVantHoff(E=self.E,d=self.dmenu.getcurselection(),
                        transwidth=int(self.tw.getvalue()))
            if 'method 2' in methods:
                self.fitElwellSchellman(E=self.E,d=self.dmenu.getcurselection(),
                                            transwidth=int(self.tw.getvalue()))
            if 'method 3' in methods:
                self.fitDifferentialCurve(E=self.E,d=self.dmenu.getcurselection(),
                                            smooth=int(self.sm.getvalue()))
            if 'method 4' in methods:
                self.breslauerMethod(E=self.E,d=self.dmenu.getcurselection())#,invert=opts.invert)
        return

    def guessMidpoint(self,x,y):
        """guess midpoint for unfolding model"""
        midy=min(y)+(max(y)-min(y))/2.0
        midx=0
        closest=1e4
        for i in range(len(x)):
            c=abs(y[i]-midy)
            if c<closest:
                midx=x[i]
                closest=c
        return midx

    def transformCD(self,x,y,transwidth=None,ax=None):
        """Transform raw data into fraction unfolded per temp value, by fitting to
            a general unfolding equation that extracts baseline/slopes"""
        #fit baseline slopes and get intercepts
        d50 = self.guessMidpoint(x,y)
        print 'fitting to get baseline slopes and intercepts..'
        print 'midpoint is %s' %d50
        A,X=Fitting.doFit(expdata=zip(x,y),model='Unfolding',noiter=50,silent=True,
                           guess=False,startvalues=[1,1,1,1,1,d50])
        #print X.getResult()
        fity = X.getFitLine(x)
        fd=X.getFitDict()
        if ax!=None:
            p=ax.plot(x,fity,'r',lw=2)
            self.drawParams(ax,fd)
        #we then use slopes and intercepts get frac unfolded at each temp
        mn = fd['bn']; mu = fd['bd'] #slopes
        #if mu>0.01: mu = 0.01
        yn = fd['an']; yu = fd['ad'] #intercepts
        d50 = fd['d50']; m = fd['m']

        t=[]; f=[]
        #print mu, mn
        for T,yo in zip(x,y):
            fu = (yo-(yn+mn*T)) / ((yu+mu*T)-(yn+mn*T))
            #print fu, (yo-(yn+mn*T)), (m), mu, mn
            #if f>0:
            f.append(fu)
            t.append(T)

        #try to take useful transition region of data
        at,af=t,f
        diff=1e5
        if transwidth != None:
            for i in t:
                d=abs(i-d50)
                if d<diff:
                    mid = t.index(i)
                    diff=d
            L=int(mid-transwidth); U=int(mid+transwidth)
            t,f = t[L:U], f[L:U]

        return at,af,t,f

    def fitVantHoff(self, E=None, d=None, xy=None, transwidth=80, invert=False,
                        show=True, figname=None):
        """Derive fraction unfolded, get K and fit to Van't Hoff.
           see http://www.jbc.org/content/277/43/40717.full
           or http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2144003/
        """
        if E != None:
            if not d in E.datasets:
                print 'no such dataset, %s' %d
                print 'available datasets:', E.datasets
                return
            ek = E.getDataset(d)
            x,y = ek.getxySorted()
        elif xy!=None:
            x,y = xy

        if 'Convert Celsius-Kelvin' in self.conversions.getcurselection():
            x = [i+273 for i in x]
        if invert == True:
            y = [max(y)-i for i in y[:]]

        f=plt.figure(figsize=(18,6))
        ax=f.add_subplot(131)
        p=ax.plot(x,y,'o',alpha=0.6)
        ax.set_xlabel('T(K)'); ax.set_ylabel('mdeg')
        ax.set_title('raw data')

        x1,y1,x,y = self.transformCD(x,y,transwidth,ax)
        cw=csv.writer(open('frac_unfolded_'+d+'.csv','w'))
        cw.writerow(['temp','frac'])
        for i in zip(x1,y1):
            cw.writerow(i)

        #derive lnK vs 1/T
        t=[]; k=[]

        for T,fu in zip(x,y):
            if fu>=1 or fu<=0:
                continue
            K = fu/(1-fu)
            klog = math.log(K)
            k.append(klog)
            t.append(1/T)

        if len(t)<2: return None, None, None

        ax=f.add_subplot(132)
        p=ax.plot(x1,y1,'o',color='g',alpha=0.6)
        ax.set_xlabel('T(K)'); ax.set_ylabel('fu')
        ax.set_title('fraction unfolded')

        ax=f.add_subplot(133)
        p=ax.plot(t,k,'x',mew=2,color='black')
        ax.set_xlabel('1/T')#(r'$1/T ($K^-1)$')
        ax.set_ylabel('ln K')

        formatter = matplotlib.ticker.ScalarFormatter()
        formatter.set_scientific(True)
        formatter.set_powerlimits((0,0))
        ax.xaxis.set_major_formatter(formatter)
        for l in ax.get_xticklabels():
            l.set_rotation(30)

        #fit this van't hoff plot
        A,X=Fitting.doFit(expdata=zip(t,k),model='Linear')
        fitk = X.getFitLine(t)
        p=ax.plot(t,fitk,'r',lw=2)
        fd=X.getFitDict()
        #self.drawParams(ax,fd)

        #slope is deltaH/R/1000 in kJ
        deltaH = -fd['a']*self.R/1000
        deltaS = fd['b']*self.R/1000
        f.suptitle("Method 1 - deltaH: %2.2f deltaS: %2.2f" %(deltaH,deltaS),size=18)
        f.subplots_adjust(bottom=0.15,top=0.85)

        if show==True:
            self.showTkFigure(f)

        if figname == None: figname = d
        figname = figname.replace('.','_')
        fname = figname+'m1'+'.png'
        f.savefig(fname,dpi=300)
        print 'plot saved to %s' %os.path.abspath(fname)
        #plt.close()
        if E!=None:
            fdata = Fitting.makeFitData(X.name,vrs=X.variables)
            E.insertDataset(xydata=[t,k], newname=d+'_vanthoff',replace=True,fit=fdata)
            #E.saveProject()
        return deltaH, deltaS, ax

    def fitElwellSchellman(self,E=None, d=None, xy=None,transwidth=50,
                                invert=False,show=True,figname=None):
        """Fit entire raw data simultaneously to the three main thermodynamic
           parameters using Elwell/Schellman method"""
        if E !=None:
            ek = E.getDataset(d)
            x,y,a, xerr,yerr = ek.getAll()
        elif xy!=None:
            x,y = xy
        else:
            return
        if invert == True:
            y = [max(y)-i for i in y[:]]
        f=plt.figure(figsize=(10,5))
        ax=f.add_subplot(121)
        p=ax.plot(x,y,'o',alpha=0.5)
        ax.set_xlabel('T');ax.set_xlabel('mdeg')
        ax.set_title('raw data')

        x1,y1,x,y = self.transformCD(x,y,transwidth,ax)

        t=[];dg=[]
        R=8.3144e-3
        for T,fu in zip(x,y):
            if fu>=1 or fu<=0:
                continue
            K = fu/(1-fu)
            deltaGt = -R * T * math.log(K)
            dg.append(deltaGt)
            t.append(T)

        ax1=f.add_subplot(122)
        p=ax1.plot(t,dg,'x',mew=2,color='black')
        ax1.set_xlabel('T'); ax1.set_ylabel('dG(T)')
        ax.set_title('stability curve')

        A,X=Fitting.doFit(expdata=zip(t,dg),model='schellman',grad=1e-9,conv=1e-9)
        fity = X.getFitLine(t)
        p=ax1.plot(t,fity,'r',lw=2)
        fd=X.getFitDict()
        self.drawParams(ax1,fd)
        deltaH=fd['deltaH']; deltacp=fd['deltacp']; Tm=fd['Tm']
        f.suptitle("Method 2 - deltaH: %2.2f deltaCp: %2.2e Tm: %2.2f" %(deltaH,deltacp,Tm),size=18)
        if show == True:
            self.showTkFigure(f)

        if figname == None: figname = d
        figname = figname.replace('.','_')
        fname = figname+'m1'+'.png'
        f.savefig(fname,dpi=300)
        print 'plot saved to %s' %os.path.abspath(fname)
        if E!=None:
            fdata = Fitting.makeFitData(X.name,vrs=X.variables)
            E.insertDataset(xydata=[t,dg], newname=d+'_vanthoff2',replace=True,fit=fdata)
            #E.saveProject()
        return deltaH, Tm, deltacp

    def breslauerMethod(self,E=None, d=None, xy=None,invert=False,
                        show=True,figname=None):
        """Finds slope of trans region and plugs this in to equation
        http://www.springerlink.com/content/r34n0201g30563u7/  """
        if E !=None:
            ek = E.getDataset(d)
            x,y,a, xerr,yerr = ek.getAll()
        elif xy!=None:
            x,y = xy
        else:
            return
        f=plt.figure(figsize=(10,6))
        ax=f.add_subplot(111)
        ax.set_xlabel('T')
        p=ax.plot(x,y,'o',alpha=0.5)
        d50 = self.guessMidpoint(x,y)
        A,X=Fitting.doFit(expdata=zip(x,y),model='Unfolding',conv=1e-7,noiter=60,
                            guess=False,startvalues=[1,1,1,1,1,d50])
        fity = X.getFitLine(x)
        p=ax.plot(x,fity,'r',lw=2)
        fd=X.getFitDict()
        self.drawParams(ax,fd)
        Tm = fd['d50']; m = fd['m']
        R = 8.3144e-3
        deltaH =  R * math.pow(Tm,2) * m
        f.suptitle("Method 4 - deltaH: %2.2f Tm: %2.2f" %(deltaH,Tm),size=18)
        if show == True:
            self.showTkFigure(f)
        if figname != None:
            figname = figname.replace('.','_')
            f.savefig(figname)
            plt.close()
        return deltaH, Tm

    def fitDifferentialCurve(self, E=None, d=None, xy=None,smooth=0,
                                invert=False,show=True,figname=None):
        """Derive differential denaturation curve and fit to get deltaH
           We smooth the unfolding curve and then differentiate and finally
           fit to a 3 parameter equation.
           See http://www.ncbi.nlm.nih.gov/pubmed/10933511"""

        if E !=None:
            ek = E.getDataset(d)
            x,y,a, xerr,yerr = ek.getAll()
        elif xy!=None:
            x,y = xy
        else:
            return
        if invert == True:
            y = [max(y)-i for i in y[:]]

        leg=[]; lines=[]
        f=plt.figure(figsize=(10,5))
        ax=f.add_subplot(121)
        p=ax.plot(x,y,'x',color='black',mew=3,alpha=0.5)
        leg.append(p); lines.append('original')
        #smooth
        if smooth == 0:
            smooth=int(len(x)/15.0)
        s=self.smoothListGaussian(y,smooth)
        p=ax.plot(x[:len(s)-1],s[:-1],lw=3)
        leg.append(p); lines.append('smoothed')
        ax.set_title("original data")
        ax.set_xlabel('T')
        ax1=f.add_subplot(122)
        #differentiate
        dx,ds = self.differentiate(x[:len(s)],s)
        #ds = [i/max(ds) for i in ds]
        ds = [i*10 for i in ds]
        cw=csv.writer(open('diffcd.csv','w'))
        for row in zip(dx,ds):
            cw.writerow(row)
        p=ax1.plot(dx,ds,'-',lw=1.5,alpha=0.7,color='black')
        leg.append(p); lines.append('differential')
        ax1.set_title("differential denaturation")
        ax1.set_xlabel('T'); ax1.set_ylabel('dsignal/dT')

        A,X=Fitting.doFit(expdata=zip(dx,ds),model='diffDenaturation',grad=1e-9,conv=1e-10)
        fity = X.getFitLine(dx)
        p=ax1.plot(dx,fity,'r',lw=2)
        leg.append(p); lines.append('fit')
        t=X.getFitDict()
        self.drawParams(ax1,t)
        dHkcal=t['deltaH']/4.184
        f.suptitle('Method 3 - deltaH: %2.2f kJ/mol (%2.2f kcal) Tm: %2.2f' %(t['deltaH'],dHkcal,t['Tm']),size=18)
        ax.legend(leg,lines,loc='best',prop=FontProperties(size="smaller"))
        #f.subplots_adjust(hspace=0.8)
        if show == True:
            self.showTkFigure(f)
        if figname != None:
            figname = figname.replace('.','_')
            f.savefig(figname+'m3',dpi=300)
            plt.close()
        if E!=None:
            fdata = Fitting.makeFitData(X.name,vrs=X.variables)
            E.insertDataset(xydata=[dx,ds], newname=d+'_diff',replace=True,fit=fdata)
            #E.saveProject()
        return t['deltaH'],t['Tm']

    def differentiate(self, x,y):
        dy = numpy.diff(y,1)
        dx = x[:len(dy)]
        return dx,dy

    def smoothListGaussian(self,data,degree=5):
        """Gaussian data smoothing function"""
        #buffer data to avoid offset result
        data=list(data)
        data = [data[0]]*(degree-1) + data + [data[-1]]*degree
        window=degree*2-1
        weight=numpy.array([1.0]*window)
        weightGauss=[]
        for i in range(window):
            i=i-degree+1
            frac=i/float(window)
            gauss=1/(numpy.exp((4*(frac))**2))
            weightGauss.append(gauss)
        weight=numpy.array(weightGauss)*weight
        smoothed=[0.0]*(len(data)-window)
        for i in range(len(smoothed)):
            smoothed[i]=sum(numpy.array(data[i:i+window])*weight)/sum(weight)
        return smoothed

    def invert(self,data):
        inv=[i for i in data]
        return inv

    def simulateCD(self,noise=1.0):
        """Simulate some CD spec data"""
        x=list(numpy.arange(290,380,0.2)); y=[]
        X=Fitting.getFitter(model='Unfolding',
                              vrs=[-16, 0.01, -11.6, 0.01, 2.7, 324])
        fity = X.getFitLine(x)
        for i in fity:
            noise=numpy.random.normal(i, 1.0/2)
            y.append(i+noise)
        cw=csv.writer(open('cd.csv','w'))
        for row in zip(x,y):
            cw.writerow(row)
        return x,y

    def drawParams(self,ax,d):
        ymin, ymax = ax.get_ylim()
        xmin, xmax = ax.get_xlim()
        inc=(ymax-ymin)/20
        xinc=(xmax-xmin)/20
        y=ymax-inc
        for k in d:
            s = k+'='+str(round(d[k],3))
            ax.text(xmin+xinc,y,s,fontsize=10)
            y-=inc
        return

    def pltConfig(self):
        #plt.rc('text', usetex=True)
        plt.rc('figure.subplot', hspace=0.3,wspace=0.3)
        #plt.rc('axes',titlesize=22)
        plt.rc('font',family='monospace')
        return

    def doAll(self, methods=['method 1']):
        """Process all datasets in ekinprj"""
        E=self.E
        vals={}
        from Dialogs import PEATDialog
        pb=PEATDialog(self.mainwin, option='progressbar',
                                      message='Analysing Data..')
        pb.update_progress(0)
        total = len(E.datasets); count=0
        for d in E.datasets:
            if '_diff' in d or '_vanthoff' in d:
                continue
            vals[d]={}
            name = d
            if 'method 1' in methods:
                vals[d]['dH1'], vals[d]['dS1'], ax = self.fitVantHoff(E,d,
                                                         transwidth=int(self.tw.getvalue()),
                                                         show=False,figname=name)
            if 'method 2' in methods:
                vals[d]['dH2'], vals[d]['dTm2'], vals[d]['dCp2'] = self.fitElwellSchellman(E,d,show=False,figname=name)
            if 'method 3' in methods:
                vals[d]['dH3'], vals[d]['dTm3'] = self.fitDifferentialCurve(E,d,show=False,figname=name)
            count += 1
            pb.update_progress(float(count)/total*100.0)
        pb.close()
        self.showTable(vals)
        return

    def showTable(self, data):
        """Show results in table"""
        from PEATDB.DictEdit import DictEditor
        D=DictEditor(self.mainwin)
        D.loadTable(data)
        return

    def benchmark(self,E=None,d=None, method=1):
        """Test methods with varying paramaters, smoothing etc"""
        if E==None and self.E != None:
            E = self.E; d=self.dmenu.getcurselection()

        path='vh_benchmark'
        if not os.path.exists(path):
            os.mkdir(path)
        dHvals=[]

        if method == 1:
            xlabel = 'width (K)'
            title = 'method 1: deltaH variation with trans region width fit'
            vals=range(5,140,5)
            for w in vals:
                dH, dS, ax = self.fitVantHoff(E,d,transwidth=w,show=False,
                                              figname=os.path.join(path,'%s_%s.png' %(d,w)))
                if dH == None: dH=0
                dHvals.append(dH)
            #take best values from middle
            #dHvals= dHvals[5:16]
        elif method == 2:
            xlabel = 'width (K)'
            title = 'method 2: deltaH variation with width fit'
            vals=range(5,140,5)
            for w in vals:
                dH, dcp, dTm = self.fitElwellSchellman(E,d,transwidth=w,show=False,
                                                       figname=os.path.join(path,'%s_%s.png' %(d,w)))
                dHvals.append(dH)
        elif method == 3:
            xlabel = 'smoothing degree'
            title = 'method 3: deltaH variation with degree of smoothing'
            vals=range(1,30,3)
            for s in vals:
                dH, dTm = self.fitDifferentialCurve(E,d,smooth=s,show=False,
                                                    figname=os.path.join(path,'%s_%s.png' %(d,s)))
                dHvals.append(dH)
        mean = numpy.mean(dHvals)
        stdev = numpy.std(dHvals)
        f=plt.figure()
        ax=f.add_subplot(111)
        ax.plot(vals, dHvals,lw=2)
        ax.set_xlabel(xlabel)
        ax.set_ylabel('deltaH (kJ)')
        ax.set_title('mean: %2.2f stdev: %2.2f'%(mean, stdev))
        f.suptitle(title)
        f.savefig('benchmark_%s.png' %method)
        cw=csv.writer(open('benchmark_%s.csv' %method,'w'))
        for row in zip(vals,dHvals):
            cw.writerow(row)
        return

    def benchmarkLimitedData(self, E=None,d=None, method=1):
        """test any method with varying limited data"""
        if E==None and self.E != None:
            E = self.E; d=self.dmenu.getcurselection()

        path='vh_benchmark'
        if not os.path.exists(path):
            os.mkdir(path)
        dHvals=[]
        vals=[]
        if method == 1:
            L=range(5,140,5)
            for w in vals:
                dH, dS, ax = self.fitVantHoff(E,d,transwidth=w,show=False,
                                              figname=os.path.join(path,'%s_%s.png' %(d,w)))
        return

    @classmethod
    def plotCorrelation(self,x=None,y=None,xlabel='method1',ylabel='method2'):
        if x==None:
            data=open('compared.csv','r')
            cr=csv.reader(data)
            x=[float(r[0]) for r in cr]; data.seek(0)
            y=[float(r[1]) for r in cr]
        f=plt.figure()
        ax=f.add_subplot(111)

        line = ax.scatter(x, y, marker='o',alpha=0.8)
        cl = numpy.arange(0,max(x)+50)
        ax.plot(cl, cl, 'g', alpha=0.5,lw=2)
        ax.set_xlabel(xlabel)
        ax.set_ylabel(ylabel)
        ax.set_xlim(150,600); ax.set_ylim(150,600)
        ax.set_title('Correlation')
        from scipy.stats import stats
        cc = str(round(pow(stats.pearsonr(x,y)[0],2),2))
        ax.text(400,180, r'$r^2= %s$' %cc, fontsize=16)
        self.showTkFigure(f)
        return

    def showTkFigure(self, fig):
        from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg
        fr = Toplevel()
        canvas = FigureCanvasTkAgg(fig, master=fr)
        #self.canvas.show()
        canvas.get_tk_widget().pack(side=TOP, fill=X, expand=1)
        mtoolbar = NavigationToolbar2TkAgg(canvas, fr)
        mtoolbar.update()
        canvas._tkcanvas.pack(side=BOTTOM, fill=BOTH, expand=1)
        return
Beispiel #4
0
class VantHoff(Plugin):
    """A plugin to do Van't Hoff Analysis of temperature melting curves"""
    """Author: Damien Farrell"""

    capabilities = ['gui', 'uses_sidepane']
    requires = ['pylab', 'numpy']
    menuentry = "Van't Hoff Analysis"

    gui_methods = {
        'getCSV': 'Import CSV',
        'loadEkin': 'Load Ekin Proj',
        'saveEkin': 'Save Ekin Proj',
        'doAnalysis': "Do Analysis",
        #'benchmark': 'Do Benchmark',
        'close': 'Close'
    }
    about = "A plugin to do Van't Hoff Analysis of temperature melting curves"
    R = 8.3144

    def __init__(self):
        self.path = os.path.expanduser("~")
        self.pltConfig()
        self.E = None
        return

    def main(self, parent):
        if parent == None:
            return
        self.parent = parent
        self.DB = parent.DB
        self.xydata = None
        self._doFrame()
        return

    def _doFrame(self):
        if 'uses_sidepane' in self.capabilities:
            self.mainwin = self.parent.createChildFrame(width=600)
        else:
            self.mainwin = Toplevel()
            self.mainwin.title(self.menuentry)
            self.mainwin.geometry('800x600+200+100')

        methods = self._getmethods()
        fr = Frame(self.mainwin)
        fr.pack(side=LEFT, fill=BOTH)
        methods = [m for m in methods if m[0] in self.gui_methods.keys()]
        self._createButtons(methods, fr)
        self.showDatasetSelector()
        self.doall = Pmw.RadioSelect(fr,
                                     buttontype='checkbutton',
                                     orient='horizontal',
                                     labelpos='w')
        self.doall.add('Process All')
        self.doall.pack()
        self.conversions = Pmw.RadioSelect(fr,
                                           buttontype='checkbutton',
                                           orient='horizontal',
                                           labelpos='w')
        self.conversions.add('Convert Celsius-Kelvin')
        self.conversions.pack()
        self.methods = Pmw.RadioSelect(fr,
                                       buttontype='checkbutton',
                                       orient='vertical',
                                       labelpos='w',
                                       label_text='Methods:')
        for m in ['method 1', 'method 2', 'method 3', 'method 4']:
            self.methods.add(m)
        self.methods.invoke('method 1')
        self.methods.pack()
        self.sm = Pmw.EntryField(fr,
                                 labelpos='w',
                                 value=5,
                                 label_text='Smoothing:')
        self.sm.pack()
        self.tw = Pmw.EntryField(fr,
                                 labelpos='w',
                                 value=60,
                                 label_text='Width of transition:')
        self.tw.pack()
        return

    def _getmethods(self):
        """Get a list of all available public methods"""
        import inspect
        mems = inspect.getmembers(self, inspect.ismethod)
        methods = [m for m in mems if not m[0].startswith('_')]
        return methods

    def _createButtons(self, methods, fr=None):
        """Dynamically create buttons for supplied methods, which is a tuple
            of (method name, label)"""
        for m in methods:
            b = Button(fr, text=self.gui_methods[m[0]], command=m[1])
            b.pack(side=TOP, fill=BOTH)
        return

    def close(self):
        self.mainwin.destroy()
        self.plotframe = None
        return

    def showDatasetSelector(self):
        if self.E == None:
            return
        if hasattr(self, 'dmenu'):
            self.dmenu.destroy()
        self.dmenu = Pmw.OptionMenu(self.mainwin,
                                    labelpos='w',
                                    label_text='Dataset:',
                                    items=sorted(self.E.datasets),
                                    command=self.showPreview,
                                    menubutton_width=8)
        self.dmenu.pack(side=TOP, fill=BOTH)
        return

    def showPreview(self, event=None):
        if self.E == None:
            return
        if not hasattr(self, 'plotframe') or self.plotframe == None:
            from Ekin.Plotting import PlotPanel
            self.plotframe = PlotPanel(parent=self.mainwin, side=BOTTOM)
        self.plotframe.setProject(self.E)
        d = self.dmenu.getcurselection()
        self.plotframe.plotCurrent(d)
        #plt.close(1)
        return

    def getCSV(self):
        """Import a csv file"""
        self.E = EkinProject()
        from PEATDB.Ekin.IO import Importer
        importer = Importer(self, parent_win=self.mainwin)
        newdata = importer.import_multiple()
        if newdata == None: return
        for n in newdata.keys():
            self.E.insertDataset(newdata[n], n, update=None)
        print 'imported %s datasets' % len(self.E.datasets)
        self.showDatasetSelector()
        self.showPreview()
        return

    def loadEkin(self):
        """Load the ekin prj"""

        filename = tkFileDialog.askopenfilename(defaultextension='.ekinprj',
                                                initialdir=os.getcwd(),
                                                filetypes=[
                                                    ("ekinprj", "*.ekinprj"),
                                                    ("All files", "*.*")
                                                ],
                                                parent=self.mainwin)
        if not os.path.isfile(filename):
            return
        self.E = EkinProject()
        self.E.openProject(filename)
        self.showDatasetSelector()
        self.showPreview()
        return

    def saveEkin(self):
        """save proj"""
        if self.E != None:
            if self.E.filename == None:
                self.E.filename = tkFileDialog.asksaveasfilename(
                    defaultextension='.ekinprj',
                    initialdir=os.getcwd(),
                    filetypes=[("ekinprj", "*.ekinprj"), ("All files", "*.*")],
                    parent=self.mainwin)

            self.E.saveProject()
            print 'saved ekin proj'
        return

    def doAnalysis(self):
        """Execute from GUI"""
        if self.E == None:
            return
        methods = self.methods.getcurselection()
        if 'Process All' in self.doall.getcurselection():
            self.doAll(methods=methods)
        else:
            if 'method 1' in methods:
                self.fitVantHoff(E=self.E,
                                 d=self.dmenu.getcurselection(),
                                 transwidth=int(self.tw.getvalue()))
            if 'method 2' in methods:
                self.fitElwellSchellman(E=self.E,
                                        d=self.dmenu.getcurselection(),
                                        transwidth=int(self.tw.getvalue()))
            if 'method 3' in methods:
                self.fitDifferentialCurve(E=self.E,
                                          d=self.dmenu.getcurselection(),
                                          smooth=int(self.sm.getvalue()))
            if 'method 4' in methods:
                self.breslauerMethod(
                    E=self.E,
                    d=self.dmenu.getcurselection())  #,invert=opts.invert)
        return

    def guessMidpoint(self, x, y):
        """guess midpoint for unfolding model"""
        midy = min(y) + (max(y) - min(y)) / 2.0
        midx = 0
        closest = 1e4
        for i in range(len(x)):
            c = abs(y[i] - midy)
            if c < closest:
                midx = x[i]
                closest = c
        return midx

    def transformCD(self, x, y, transwidth=None, ax=None):
        """Transform raw data into fraction unfolded per temp value, by fitting to
            a general unfolding equation that extracts baseline/slopes"""
        #fit baseline slopes and get intercepts
        d50 = self.guessMidpoint(x, y)
        print 'fitting to get baseline slopes and intercepts..'
        print 'midpoint is %s' % d50
        A, X = Fitting.doFit(expdata=zip(x, y),
                             model='Unfolding',
                             noiter=50,
                             silent=True,
                             guess=False,
                             startvalues=[1, 1, 1, 1, 1, d50])
        #print X.getResult()
        fity = X.getFitLine(x)
        fd = X.getFitDict()
        if ax != None:
            p = ax.plot(x, fity, 'r', lw=2)
            self.drawParams(ax, fd)
        #we then use slopes and intercepts get frac unfolded at each temp
        mn = fd['bn']
        mu = fd['bd']  #slopes
        #if mu>0.01: mu = 0.01
        yn = fd['an']
        yu = fd['ad']  #intercepts
        d50 = fd['d50']
        m = fd['m']

        t = []
        f = []
        #print mu, mn
        for T, yo in zip(x, y):
            fu = (yo - (yn + mn * T)) / ((yu + mu * T) - (yn + mn * T))
            #print fu, (yo-(yn+mn*T)), (m), mu, mn
            #if f>0:
            f.append(fu)
            t.append(T)

        #try to take useful transition region of data
        at, af = t, f
        diff = 1e5
        if transwidth != None:
            for i in t:
                d = abs(i - d50)
                if d < diff:
                    mid = t.index(i)
                    diff = d
            L = int(mid - transwidth)
            U = int(mid + transwidth)
            t, f = t[L:U], f[L:U]

        return at, af, t, f

    def fitVantHoff(self,
                    E=None,
                    d=None,
                    xy=None,
                    transwidth=80,
                    invert=False,
                    show=True,
                    figname=None):
        """Derive fraction unfolded, get K and fit to Van't Hoff.
           see http://www.jbc.org/content/277/43/40717.full
           or http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2144003/
        """
        if E != None:
            if not d in E.datasets:
                print 'no such dataset, %s' % d
                print 'available datasets:', E.datasets
                return
            ek = E.getDataset(d)
            x, y = ek.getxySorted()
        elif xy != None:
            x, y = xy

        if 'Convert Celsius-Kelvin' in self.conversions.getcurselection():
            x = [i + 273 for i in x]
        if invert == True:
            y = [max(y) - i for i in y[:]]

        f = plt.figure(figsize=(18, 6))
        ax = f.add_subplot(131)
        p = ax.plot(x, y, 'o', alpha=0.6)
        ax.set_xlabel('T(K)')
        ax.set_ylabel('mdeg')
        ax.set_title('raw data')

        x1, y1, x, y = self.transformCD(x, y, transwidth, ax)
        cw = csv.writer(open('frac_unfolded_' + d + '.csv', 'w'))
        cw.writerow(['temp', 'frac'])
        for i in zip(x1, y1):
            cw.writerow(i)

        #derive lnK vs 1/T
        t = []
        k = []

        for T, fu in zip(x, y):
            if fu >= 1 or fu <= 0:
                continue
            K = fu / (1 - fu)
            klog = math.log(K)
            k.append(klog)
            t.append(1 / T)

        if len(t) < 2: return None, None, None

        ax = f.add_subplot(132)
        p = ax.plot(x1, y1, 'o', color='g', alpha=0.6)
        ax.set_xlabel('T(K)')
        ax.set_ylabel('fu')
        ax.set_title('fraction unfolded')

        ax = f.add_subplot(133)
        p = ax.plot(t, k, 'x', mew=2, color='black')
        ax.set_xlabel('1/T')  #(r'$1/T ($K^-1)$')
        ax.set_ylabel('ln K')

        formatter = matplotlib.ticker.ScalarFormatter()
        formatter.set_scientific(True)
        formatter.set_powerlimits((0, 0))
        ax.xaxis.set_major_formatter(formatter)
        for l in ax.get_xticklabels():
            l.set_rotation(30)

        #fit this van't hoff plot
        A, X = Fitting.doFit(expdata=zip(t, k), model='Linear')
        fitk = X.getFitLine(t)
        p = ax.plot(t, fitk, 'r', lw=2)
        fd = X.getFitDict()
        #self.drawParams(ax,fd)

        #slope is deltaH/R/1000 in kJ
        deltaH = -fd['a'] * self.R / 1000
        deltaS = fd['b'] * self.R / 1000
        f.suptitle("Method 1 - deltaH: %2.2f deltaS: %2.2f" % (deltaH, deltaS),
                   size=18)
        f.subplots_adjust(bottom=0.15, top=0.85)

        if show == True:
            self.showTkFigure(f)

        if figname == None: figname = d
        figname = figname.replace('.', '_')
        fname = figname + 'm1' + '.png'
        f.savefig(fname, dpi=300)
        print 'plot saved to %s' % os.path.abspath(fname)
        #plt.close()
        if E != None:
            fdata = Fitting.makeFitData(X.name, vrs=X.variables)
            E.insertDataset(xydata=[t, k],
                            newname=d + '_vanthoff',
                            replace=True,
                            fit=fdata)
            #E.saveProject()
        return deltaH, deltaS, ax

    def fitElwellSchellman(self,
                           E=None,
                           d=None,
                           xy=None,
                           transwidth=50,
                           invert=False,
                           show=True,
                           figname=None):
        """Fit entire raw data simultaneously to the three main thermodynamic
           parameters using Elwell/Schellman method"""
        if E != None:
            ek = E.getDataset(d)
            x, y, a, xerr, yerr = ek.getAll()
        elif xy != None:
            x, y = xy
        else:
            return
        if invert == True:
            y = [max(y) - i for i in y[:]]
        f = plt.figure(figsize=(10, 5))
        ax = f.add_subplot(121)
        p = ax.plot(x, y, 'o', alpha=0.5)
        ax.set_xlabel('T')
        ax.set_xlabel('mdeg')
        ax.set_title('raw data')

        x1, y1, x, y = self.transformCD(x, y, transwidth, ax)

        t = []
        dg = []
        R = 8.3144e-3
        for T, fu in zip(x, y):
            if fu >= 1 or fu <= 0:
                continue
            K = fu / (1 - fu)
            deltaGt = -R * T * math.log(K)
            dg.append(deltaGt)
            t.append(T)

        ax1 = f.add_subplot(122)
        p = ax1.plot(t, dg, 'x', mew=2, color='black')
        ax1.set_xlabel('T')
        ax1.set_ylabel('dG(T)')
        ax.set_title('stability curve')

        A, X = Fitting.doFit(expdata=zip(t, dg),
                             model='schellman',
                             grad=1e-9,
                             conv=1e-9)
        fity = X.getFitLine(t)
        p = ax1.plot(t, fity, 'r', lw=2)
        fd = X.getFitDict()
        self.drawParams(ax1, fd)
        deltaH = fd['deltaH']
        deltacp = fd['deltacp']
        Tm = fd['Tm']
        f.suptitle("Method 2 - deltaH: %2.2f deltaCp: %2.2e Tm: %2.2f" %
                   (deltaH, deltacp, Tm),
                   size=18)
        if show == True:
            self.showTkFigure(f)

        if figname == None: figname = d
        figname = figname.replace('.', '_')
        fname = figname + 'm1' + '.png'
        f.savefig(fname, dpi=300)
        print 'plot saved to %s' % os.path.abspath(fname)
        if E != None:
            fdata = Fitting.makeFitData(X.name, vrs=X.variables)
            E.insertDataset(xydata=[t, dg],
                            newname=d + '_vanthoff2',
                            replace=True,
                            fit=fdata)
            #E.saveProject()
        return deltaH, Tm, deltacp

    def breslauerMethod(self,
                        E=None,
                        d=None,
                        xy=None,
                        invert=False,
                        show=True,
                        figname=None):
        """Finds slope of trans region and plugs this in to equation
        http://www.springerlink.com/content/r34n0201g30563u7/  """
        if E != None:
            ek = E.getDataset(d)
            x, y, a, xerr, yerr = ek.getAll()
        elif xy != None:
            x, y = xy
        else:
            return
        f = plt.figure(figsize=(10, 6))
        ax = f.add_subplot(111)
        ax.set_xlabel('T')
        p = ax.plot(x, y, 'o', alpha=0.5)
        d50 = self.guessMidpoint(x, y)
        A, X = Fitting.doFit(expdata=zip(x, y),
                             model='Unfolding',
                             conv=1e-7,
                             noiter=60,
                             guess=False,
                             startvalues=[1, 1, 1, 1, 1, d50])
        fity = X.getFitLine(x)
        p = ax.plot(x, fity, 'r', lw=2)
        fd = X.getFitDict()
        self.drawParams(ax, fd)
        Tm = fd['d50']
        m = fd['m']
        R = 8.3144e-3
        deltaH = R * math.pow(Tm, 2) * m
        f.suptitle("Method 4 - deltaH: %2.2f Tm: %2.2f" % (deltaH, Tm),
                   size=18)
        if show == True:
            self.showTkFigure(f)
        if figname != None:
            figname = figname.replace('.', '_')
            f.savefig(figname)
            plt.close()
        return deltaH, Tm

    def fitDifferentialCurve(self,
                             E=None,
                             d=None,
                             xy=None,
                             smooth=0,
                             invert=False,
                             show=True,
                             figname=None):
        """Derive differential denaturation curve and fit to get deltaH
           We smooth the unfolding curve and then differentiate and finally
           fit to a 3 parameter equation.
           See http://www.ncbi.nlm.nih.gov/pubmed/10933511"""

        if E != None:
            ek = E.getDataset(d)
            x, y, a, xerr, yerr = ek.getAll()
        elif xy != None:
            x, y = xy
        else:
            return
        if invert == True:
            y = [max(y) - i for i in y[:]]

        leg = []
        lines = []
        f = plt.figure(figsize=(10, 5))
        ax = f.add_subplot(121)
        p = ax.plot(x, y, 'x', color='black', mew=3, alpha=0.5)
        leg.append(p)
        lines.append('original')
        #smooth
        if smooth == 0:
            smooth = int(len(x) / 15.0)
        s = self.smoothListGaussian(y, smooth)
        p = ax.plot(x[:len(s) - 1], s[:-1], lw=3)
        leg.append(p)
        lines.append('smoothed')
        ax.set_title("original data")
        ax.set_xlabel('T')
        ax1 = f.add_subplot(122)
        #differentiate
        dx, ds = self.differentiate(x[:len(s)], s)
        #ds = [i/max(ds) for i in ds]
        ds = [i * 10 for i in ds]
        cw = csv.writer(open('diffcd.csv', 'w'))
        for row in zip(dx, ds):
            cw.writerow(row)
        p = ax1.plot(dx, ds, '-', lw=1.5, alpha=0.7, color='black')
        leg.append(p)
        lines.append('differential')
        ax1.set_title("differential denaturation")
        ax1.set_xlabel('T')
        ax1.set_ylabel('dsignal/dT')

        A, X = Fitting.doFit(expdata=zip(dx, ds),
                             model='diffDenaturation',
                             grad=1e-9,
                             conv=1e-10)
        fity = X.getFitLine(dx)
        p = ax1.plot(dx, fity, 'r', lw=2)
        leg.append(p)
        lines.append('fit')
        t = X.getFitDict()
        self.drawParams(ax1, t)
        dHkcal = t['deltaH'] / 4.184
        f.suptitle('Method 3 - deltaH: %2.2f kJ/mol (%2.2f kcal) Tm: %2.2f' %
                   (t['deltaH'], dHkcal, t['Tm']),
                   size=18)
        ax.legend(leg, lines, loc='best', prop=FontProperties(size="smaller"))
        #f.subplots_adjust(hspace=0.8)
        if show == True:
            self.showTkFigure(f)
        if figname != None:
            figname = figname.replace('.', '_')
            f.savefig(figname + 'm3', dpi=300)
            plt.close()
        if E != None:
            fdata = Fitting.makeFitData(X.name, vrs=X.variables)
            E.insertDataset(xydata=[dx, ds],
                            newname=d + '_diff',
                            replace=True,
                            fit=fdata)
            #E.saveProject()
        return t['deltaH'], t['Tm']

    def differentiate(self, x, y):
        dy = numpy.diff(y, 1)
        dx = x[:len(dy)]
        return dx, dy

    def smoothListGaussian(self, data, degree=5):
        """Gaussian data smoothing function"""
        #buffer data to avoid offset result
        data = list(data)
        data = [data[0]] * (degree - 1) + data + [data[-1]] * degree
        window = degree * 2 - 1
        weight = numpy.array([1.0] * window)
        weightGauss = []
        for i in range(window):
            i = i - degree + 1
            frac = i / float(window)
            gauss = 1 / (numpy.exp((4 * (frac))**2))
            weightGauss.append(gauss)
        weight = numpy.array(weightGauss) * weight
        smoothed = [0.0] * (len(data) - window)
        for i in range(len(smoothed)):
            smoothed[i] = sum(
                numpy.array(data[i:i + window]) * weight) / sum(weight)
        return smoothed

    def invert(self, data):
        inv = [i for i in data]
        return inv

    def simulateCD(self, noise=1.0):
        """Simulate some CD spec data"""
        x = list(numpy.arange(290, 380, 0.2))
        y = []
        X = Fitting.getFitter(model='Unfolding',
                              vrs=[-16, 0.01, -11.6, 0.01, 2.7, 324])
        fity = X.getFitLine(x)
        for i in fity:
            noise = numpy.random.normal(i, 1.0 / 2)
            y.append(i + noise)
        cw = csv.writer(open('cd.csv', 'w'))
        for row in zip(x, y):
            cw.writerow(row)
        return x, y

    def drawParams(self, ax, d):
        ymin, ymax = ax.get_ylim()
        xmin, xmax = ax.get_xlim()
        inc = (ymax - ymin) / 20
        xinc = (xmax - xmin) / 20
        y = ymax - inc
        for k in d:
            s = k + '=' + str(round(d[k], 3))
            ax.text(xmin + xinc, y, s, fontsize=10)
            y -= inc
        return

    def pltConfig(self):
        #plt.rc('text', usetex=True)
        plt.rc('figure.subplot', hspace=0.3, wspace=0.3)
        #plt.rc('axes',titlesize=22)
        plt.rc('font', family='monospace')
        return

    def doAll(self, methods=['method 1']):
        """Process all datasets in ekinprj"""
        E = self.E
        vals = {}
        from Dialogs import PEATDialog
        pb = PEATDialog(self.mainwin,
                        option='progressbar',
                        message='Analysing Data..')
        pb.update_progress(0)
        total = len(E.datasets)
        count = 0
        for d in E.datasets:
            if '_diff' in d or '_vanthoff' in d:
                continue
            vals[d] = {}
            name = d
            if 'method 1' in methods:
                vals[d]['dH1'], vals[d]['dS1'], ax = self.fitVantHoff(
                    E,
                    d,
                    transwidth=int(self.tw.getvalue()),
                    show=False,
                    figname=name)
            if 'method 2' in methods:
                vals[d]['dH2'], vals[d]['dTm2'], vals[d][
                    'dCp2'] = self.fitElwellSchellman(E,
                                                      d,
                                                      show=False,
                                                      figname=name)
            if 'method 3' in methods:
                vals[d]['dH3'], vals[d]['dTm3'] = self.fitDifferentialCurve(
                    E, d, show=False, figname=name)
            count += 1
            pb.update_progress(float(count) / total * 100.0)
        pb.close()
        self.showTable(vals)
        return

    def showTable(self, data):
        """Show results in table"""
        from PEATDB.DictEdit import DictEditor
        D = DictEditor(self.mainwin)
        D.loadTable(data)
        return

    def benchmark(self, E=None, d=None, method=1):
        """Test methods with varying paramaters, smoothing etc"""
        if E == None and self.E != None:
            E = self.E
            d = self.dmenu.getcurselection()

        path = 'vh_benchmark'
        if not os.path.exists(path):
            os.mkdir(path)
        dHvals = []

        if method == 1:
            xlabel = 'width (K)'
            title = 'method 1: deltaH variation with trans region width fit'
            vals = range(5, 140, 5)
            for w in vals:
                dH, dS, ax = self.fitVantHoff(E,
                                              d,
                                              transwidth=w,
                                              show=False,
                                              figname=os.path.join(
                                                  path, '%s_%s.png' % (d, w)))
                if dH == None: dH = 0
                dHvals.append(dH)
            #take best values from middle
            #dHvals= dHvals[5:16]
        elif method == 2:
            xlabel = 'width (K)'
            title = 'method 2: deltaH variation with width fit'
            vals = range(5, 140, 5)
            for w in vals:
                dH, dcp, dTm = self.fitElwellSchellman(
                    E,
                    d,
                    transwidth=w,
                    show=False,
                    figname=os.path.join(path, '%s_%s.png' % (d, w)))
                dHvals.append(dH)
        elif method == 3:
            xlabel = 'smoothing degree'
            title = 'method 3: deltaH variation with degree of smoothing'
            vals = range(1, 30, 3)
            for s in vals:
                dH, dTm = self.fitDifferentialCurve(E,
                                                    d,
                                                    smooth=s,
                                                    show=False,
                                                    figname=os.path.join(
                                                        path,
                                                        '%s_%s.png' % (d, s)))
                dHvals.append(dH)
        mean = numpy.mean(dHvals)
        stdev = numpy.std(dHvals)
        f = plt.figure()
        ax = f.add_subplot(111)
        ax.plot(vals, dHvals, lw=2)
        ax.set_xlabel(xlabel)
        ax.set_ylabel('deltaH (kJ)')
        ax.set_title('mean: %2.2f stdev: %2.2f' % (mean, stdev))
        f.suptitle(title)
        f.savefig('benchmark_%s.png' % method)
        cw = csv.writer(open('benchmark_%s.csv' % method, 'w'))
        for row in zip(vals, dHvals):
            cw.writerow(row)
        return

    def benchmarkLimitedData(self, E=None, d=None, method=1):
        """test any method with varying limited data"""
        if E == None and self.E != None:
            E = self.E
            d = self.dmenu.getcurselection()

        path = 'vh_benchmark'
        if not os.path.exists(path):
            os.mkdir(path)
        dHvals = []
        vals = []
        if method == 1:
            L = range(5, 140, 5)
            for w in vals:
                dH, dS, ax = self.fitVantHoff(E,
                                              d,
                                              transwidth=w,
                                              show=False,
                                              figname=os.path.join(
                                                  path, '%s_%s.png' % (d, w)))
        return

    @classmethod
    def plotCorrelation(self,
                        x=None,
                        y=None,
                        xlabel='method1',
                        ylabel='method2'):
        if x == None:
            data = open('compared.csv', 'r')
            cr = csv.reader(data)
            x = [float(r[0]) for r in cr]
            data.seek(0)
            y = [float(r[1]) for r in cr]
        f = plt.figure()
        ax = f.add_subplot(111)

        line = ax.scatter(x, y, marker='o', alpha=0.8)
        cl = numpy.arange(0, max(x) + 50)
        ax.plot(cl, cl, 'g', alpha=0.5, lw=2)
        ax.set_xlabel(xlabel)
        ax.set_ylabel(ylabel)
        ax.set_xlim(150, 600)
        ax.set_ylim(150, 600)
        ax.set_title('Correlation')
        from scipy.stats import stats
        cc = str(round(pow(stats.pearsonr(x, y)[0], 2), 2))
        ax.text(400, 180, r'$r^2= %s$' % cc, fontsize=16)
        self.showTkFigure(f)
        return

    def showTkFigure(self, fig):
        from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg
        fr = Toplevel()
        canvas = FigureCanvasTkAgg(fig, master=fr)
        #self.canvas.show()
        canvas.get_tk_widget().pack(side=TOP, fill=X, expand=1)
        mtoolbar = NavigationToolbar2TkAgg(canvas, fr)
        mtoolbar.update()
        canvas._tkcanvas.pack(side=BOTTOM, fill=BOTH, expand=1)
        return