def test_gp_population_full(): Add.nargs = 2 Mul.nargs = 2 from EvoDAG.gp import Population from EvoDAG import EvoDAG fs = EvoDAG()._function_set class Population2(Population): def __init__(self, *args, **kwargs): super(Population2, self).__init__(*args, **kwargs) self._funcs = [Add, Sin] self._terms = [2, 0] def random_function(self): func = self._funcs.pop() if func.nargs == 1: return func(0, weight=1) return func(range(func.nargs), weight=np.ones(func.nargs)) def random_terminal(self): return Variable(self._terms.pop(), 1) pop = Population2(fs, nterminals=3) ind = pop.create_random_ind_full(depth=2) assert len(pop._funcs) == 0 and len(pop._terms) == 0 assert isinstance(ind[0], Sin) and isinstance(ind[1], Add) assert ind[2].variable == 0 and ind[3].variable == 2 ind = Individual(ind) print(X.shape, ind.individual) hy = ind.decision_function(X) assert hy.isfinite() default_nargs()
def test_gp_population_full(): Add.nargs = 2 Mul.nargs = 2 from EvoDAG.gp import Population from EvoDAG import EvoDAG fs = EvoDAG()._function_set class Population2(Population): def __init__(self, *args, **kwargs): super(Population2, self).__init__(*args, **kwargs) self._funcs = [Add, Sin] self._terms = [2, 0] def random_function(self): func = self._funcs.pop() if func.nargs == 1: return func(0, weight=1) return func(range(func.nargs), weight=np.ones(func.nargs)) def random_terminal(self): return Variable(self._terms.pop(), 1) pop = Population2(fs, nterminals=3) ind = pop.create_random_ind_full(depth=2) assert len(pop._funcs) == 0 and len(pop._terms) == 0 assert isinstance(ind[0], Sin) and isinstance(ind[1], Add) assert ind[2].variable == 0 and ind[3].variable == 2 ind = Individual(ind) print(X.shape, ind.individual) hy = ind.decision_function(X) assert hy.isfinite()
def test_indindividual_decision_function(): Add.nargs = 2 Mul.nargs = 2 vars = Model.convert_features(X) for x in vars: x._eval_ts = x._eval_tr.copy() vars = [Variable(k, weight=1) for k in range(len(vars))] for i in range(len(vars)): ind = Individual([vars[i]]) ind.decision_function(X) hy = ind._ind[0].hy.tonparray() [assert_almost_equals(a, b) for a, b in zip(X[:, i], hy)] ind = Individual([Sin(0, weight=1), Add(range(2), np.ones(2)), vars[0], vars[-1]]) ind.decision_function(X) hy = ind._ind[0].hy.tonparray() y = np.sin(X[:, 0] + X[:, -1]) [assert_almost_equals(a, b) for a, b in zip(y, hy)] y = np.sin((X[:, 0] + X[:, 1]) * X[:, 0] + X[:, 2]) ind = Individual([Sin(0, weight=1), Add(range(2), weight=np.ones(2)), Mul(range(2), weight=1), Add(range(2), weight=np.ones(2)), vars[0], vars[1], vars[0], vars[2]]) ind.decision_function(X) # assert v.hy.SSE(v.hy_test) == 0 hy = ind._ind[0].hy.tonparray() [assert_almost_equals(a, b) for a, b in zip(hy, y)]
def test_indindividual_decision_function(): Add.nargs = 2 Mul.nargs = 2 vars = Model.convert_features(X) for x in vars: x._eval_ts = x._eval_tr.copy() vars = [Variable(k, weight=np.ones(1)) for k in range(len(vars))] for i in range(len(vars)): ind = Individual([vars[i]]) ind.decision_function(X) hy = tonparray(ind._ind[0].hy) [assert_almost_equals(a, b) for a, b in zip(X[:, i], hy)] ind = Individual([ Sin(0, weight=np.ones(1)), Add(range(2), np.ones(2)), vars[0], vars[-1] ]) ind.decision_function(X) print(ind._ind[0].hy, ind._ind[1].hy) hy = tonparray(ind._ind[0].hy) y = np.sin(X[:, 0] + X[:, -1]) [assert_almost_equals(a, b) for a, b in zip(y, hy)] y = np.sin((X[:, 0] + X[:, 1]) * X[:, 0] + X[:, 2]) ind = Individual([ Sin(0, weight=1), Add(range(2), weight=np.ones(2)), Mul(range(2), weight=1), Add(range(2), weight=np.ones(2)), vars[0], vars[1], vars[0], vars[2] ]) ind.decision_function(X) # assert v.hy.SSE(v.hy_test) == 0 hy = tonparray(ind._ind[0].hy) [assert_almost_equals(a, b) for a, b in zip(hy, y)] default_nargs()