def av_gdp_growth_prod(self, countries_list, years_list, production_type): ''' Returns a list with the countries and their average gdp, growth and production in years_list ''' data_tables = create_engine('sqlite:///world-gdp.db') Session = sessionmaker(bind=data_tables) session = Session() gdp = [] growth = [] prod = [] f = Fao() result_list = {} for country in countries_list: growth.append(list(self.average_growth([country], years_list).values())[0]) gdp.append(list(self.average_gdp([country], years_list).values())[0]) prod.append(list(f.average_production([country], years_list, production_type, "Food").values())[0]) result_list[country] = [ "average growth: " + str(list(self.average_growth([country], years_list).values())[0]), "average gdp: " + str(list(self.average_gdp([country], years_list).values())[0]), "average production: " + str( list(f.average_production([country], years_list, production_type, "Food").values())[0])] return result_list print(prod) session.close()
def test_avg_gdp_growth_prod(self): datas = self.data.list_countries() a = [datas[15]] f = Fao() self.assertEqual( self.data.conclusion_gdp_growth_prod( a, [2000, 2001], [2003, 2006], f.list_products_countries(a))[datas[15]], "'average growth difference' : 0.029821664308110396, 'average " "production difference' : 1.9516826562373795")
def conclusion_gdp_growth_prod(self, countries_list, year_range_2, production_type): ''' Returns a list with the countries and their average gdp, growth and production in years_list ''' data_tables = create_engine('sqlite:///world-gdp.db') Session = sessionmaker(bind=data_tables) session = Session() growth = [] prod = [] diff_growth = [] diff_prod = [] f = Fao() diff="" year_range_1 = [year_range_2[0]-5, year_range_2[0]-1] for country in countries_list: for fao_country in f.list_countries(): if self.similar(country, fao_country) == 1: growth.append(list(self.average_growth([country], year_range_1).values())[0]) prod.append( list(f.average_production([country], year_range_1).values())[0]) growth.append(list(self.average_growth([country], year_range_2).values())[0]) prod.append( list(f.average_production([country], year_range_2).values())[0]) break for i in range(len(growth)): if growth[i] == None: growth[i] = 0 if prod[i] == None: prod[i] = 0 for i in range(0, len(growth), 2): diff_growth.append(growth[i + 1] - growth[i]) diff_prod.append(prod[i + 1] - prod[i]) for i in range(len(diff_prod)): diff += str(countries_list[i]) + ": 'average growth difference' : " + str( diff_growth[i]) + ", 'average production difference' : " + str( diff_prod[i]) + "\n" return diff session.close()
class TestFao(TestCase): def setUp(self): self.data = Fao() def test_countries(self): self.assertEqual(self.data.countries()[0], "Afghanistan") def test_products(self): self.assertEqual(self.data.products("Afghanistan")[0], "Wheat and products") def test_min(self): self.assertEqual(self.data.min(["Afghanistan"], ['Y1961', 'Y2013']), "a completer") def test_max(self): self.assertEqual(self.data.max(["Afghanistan"], ['Y1961', 'Y2013']), ["Wheat and products", "Y2013"]) def test_av(self): self.assertEqual(self.data.av(["Afghanistan"], ['Y1961', 'Y1965'], "Wheat and products"), 1889.8)
class TestFao(TestCase): def setUp(self): self.data = Fao() def test_list_countries(self): countries = self.data.list_countries() self.assertEqual(countries[0], "Afghanistan") self.assertEqual(countries[42], "Cyprus") self.assertEqual(countries[-1], "Zimbabwe") self.assertEqual(countries[137], "Senegal") self.assertEqual(len(countries), 174) def test_list_products_countries(self): countries = self.data.list_countries() self.assertEqual( self.data.list_products_countries([countries[0]])[countries[0]][0], "Wheat and products") self.assertEqual( self.data.list_products_countries([countries[-1] ])[countries[-1]][0], "Wheat and products") def test_min_production(self): countries = self.data.list_countries() self.assertEqual( self.data.min_production([countries[0]], [2010, 2013])[countries[0]][0][-1], 0) def test_max_production(self): countries = self.data.list_countries() self.assertEqual( self.data.max_production([countries[0]], [2010, 2013])[countries[0]][-1], 5495) def test_average_production(self): countries = self.data.list_countries() self.assertEqual( self.data.average_production([countries[0], countries[42]], [1961, 1965], "Wheat and products"), { countries[0]: 1889.8, countries[42]: 67.4 })
class ApiFao: def __init__(self): ''' Initializes the class ''' self.fao1 = Fao() def list_presents_countries(self): return self.fao1.countries() def list_products_of_country(self, country_name): return self.fao1.products(country_name) def dict_products_of_countries(self, countries_list): return self.fao1.country_prod(countries_list) def dict_max_of_countries_productions(self, countries_list, years_filter): return self.fao1.max(countries_list, years_filter) def dict_min_of_countries_productions(self, countries_list, years_filter): return self.fao1.min(countries_list, years_filter) def dict_avg_of_countries_productions(self, countries_list, years_filter, production_filter, food_or_feed): return self.fao1.av(countries_list, years_filter, production_filter, food_or_feed)
def setUp(self): self.data = Fao()
def __init__(self): self.F = Fao()
class Analyse: ''' Class with all the data analyse functions. ''' def __init__(self): self.F = Fao() def list_countries(self): ''' Return the list of all the countries :return: list_countries ''' data_tables = create_engine('sqlite:///world-gdp.db') Session = sessionmaker(bind=data_tables) session = Session() list_countries = [ x[0] for x in session.query(Countries.CountryName).all() ] session.close() return list_countries def geo_zone(self): ''' Returns a dictionary that associates each country with it zone. :return: geo_dic ''' data_tables = create_engine('sqlite:///world-gdp.db') Session = sessionmaker(bind=data_tables) session = Session() geo_dic = {} dataCountry = [] dataZone = [] with open("Book1.csv") as csv_file: for row in csv.reader(csv_file, delimiter=';'): dataCountry.append(row[0]) dataZone.append(row[1]) for i, country in enumerate(dataCountry): if country in self.list_countries(): geo_dic[country] = dataZone[i] session.close() return geo_dic def countries_code(self): ''' Returns the list of all the countries' codes. :return: countries_code ''' data_tables = create_engine('sqlite:///world-gdp.db') Session = sessionmaker(bind=data_tables) session = Session() countries_code = [ x[0] for x in session.query(Countries.CountryCode).all() ] session.close() return countries_code def code_to_name(self, code): ''' Returns the name of the country from its country code. :param code: :return: name ''' data_tables = create_engine('sqlite:///world-gdp.db') Session = sessionmaker(bind=data_tables) session = Session() name = session.query( Countries.CountryName).filter_by(CountryCode=code).first()[0] session.close() return name def name_to_code(self, name): ''' Returns the name of the country from its country code. :param name: :return: code ''' data_tables = create_engine('sqlite:///world-gdp.db') Session = sessionmaker(bind=data_tables) session = Session() code = session.query( Countries.CountryCode).filter_by(CountryName=name).first()[0] session.close() return code def similar(self, a, b): return SequenceMatcher(None, a, b).ratio() def countries_data(self, countries, years): ''' Returns a dictionary of countries with each country a list of years with a data set (gdp and growth). :param countries: :param years: :return: countries_data_dic ''' data_tables = create_engine('sqlite:///world-gdp.db') Session = sessionmaker(bind=data_tables) session = Session() countries_data_dic = {} years_vect = [x for x in range(years[0], years[1] + 1)] for country in countries: countries_data_dic[country] = list(session.query(Gdp.Year, Gdp.gdp, Gdp.growth)\ .filter_by(CountryCode=self.name_to_code(country)).filter(Gdp.gdp != '').filter(Gdp.Year.in_(years_vect)).all()) for i, elt in enumerate(countries_data_dic[country]): countries_data_dic[country][i] = list( countries_data_dic[country][i]) session.close() return countries_data_dic def average_gdp(self, countries, years): ''' Returns the average value of the gdp for a country list and a fixed period. :param countries: :param years: :return: av_dic ''' data_tables = create_engine('sqlite:///world-gdp.db') Session = sessionmaker(bind=data_tables) session = Session() av_dic = {} for country in countries: CC = self.name_to_code(country) years_vec = [x for x in range(years[0], years[1] + 1)] av_dic[country] = session.query(func.avg(Gdp.gdp))\ .filter_by(CountryCode=CC).filter(Gdp.gdp != '').filter(Gdp.Year.in_(years_vec)).first()[0] session.close() return av_dic def average_growth(self, countries, years): ''' Returns the average value of the growth for a country list and a fixed period. :param countries: :param years: :return: av_dic ''' data_tables = create_engine('sqlite:///world-gdp.db') Session = sessionmaker(bind=data_tables) session = Session() av_dic = {} for country in countries: CC = self.name_to_code(country) years_vect = [x for x in range(years[0], years[1] + 1)] av_dic[country] = session.query(func.avg(Gdp.growth)) \ .filter_by(CountryCode=CC).filter(Gdp.growth != '').filter(Gdp.Year.in_(years_vect)).first()[0] session.close() return av_dic def world_health(self, years): ''' Returns the world health and the geographic place of the countries in crisis :param years: :return: world health, region dic and unknown countries number ''' crisis = 0 exception = 0 health = 0 unknown_countries = 0 countries_crisis = [] dic = self.geo_zone() dic_keys = list(dic.keys()) region_dic ={'Asia & Pacific':0 ,'Europe':0 , 'Arab States':0 , 'Africa':0 , \ 'South/Latin America':0 , 'Unknown':0, 'North America':0} for country in self.list_countries(): past_gdp = self.average_growth( [country], [years[0] - 5, years[0] - 1])[country] now_gdp = self.average_growth([country], years)[country] if past_gdp == None or now_gdp == None: exception += 1 else: if now_gdp < past_gdp: crisis += 1 countries_crisis.append(country) for elt in dic_keys: if self.similar(elt, country) > 0.7: region = dic[elt] #print(country,region) region_dic[region] += 1 break else: health += 1 # production_conclusion = self.production_growth(countries_crisis[:5], years) print('*********************************************************\n') # print(production_conclusion) list_countries_len = len(self.list_countries()) health_percentage = (health / list_countries_len) * 100 crisis_percentage = (crisis / list_countries_len) * 100 exception_percentage = (exception / list_countries_len) * 100 print('\nFor the year {} to {} :\n'.format(years[0], years[1])) print("Percentage of healthy countries : {}% \nPercentage of countries in crisis : {}% \nPercentage of not enougth data : {}%\n"\ .format(round(health_percentage), round(crisis_percentage), round(exception_percentage))) max_of_three = max( [health_percentage, crisis_percentage, exception_percentage]) if max_of_three == exception_percentage: return ('Not enought data') elif max_of_three == crisis_percentage: print('World in crisis !\n') return region_dic, unknown_countries elif max_of_three == health_percentage: print('World is in good shape !\n') return region_dic, unknown_countries def min_gdp(self, listOfCountries, years): ''' Returns the minimum gdp of each countries of listOfCountries for the given period years, and the global minimum :param listOfCountries: :param years: :return: global min and min for each country ''' data_tables = create_engine('sqlite:///world-gdp.db') Session = sessionmaker(bind=data_tables) session = Session() list_of_code = {} for country in listOfCountries: name = self.name_to_code(country) years_vect = [x for x in range(years[0], years[1] + 1)] list_of_code[country] = \ session.query(func.min(Gdp.gdp)).filter_by(CountryCode=name).filter(Gdp.Year.in_(years_vect)).first()[0] for elt in list(list_of_code.items()): if elt[1] == '': list_of_code[elt[0]] = 0 session.close() return min(list(list_of_code.values())), list_of_code def max_gdp(self, listOfCountries, years): ''' Returns the maximum gdp of each countries of listOfCountries for the given period years, and the global maximum :param listOfCountries: :param years: :return: global max and max for each country ''' data_tables = create_engine('sqlite:///world-gdp.db') Session = sessionmaker(bind=data_tables) session = Session() list_of_code = {} for country in listOfCountries: name = self.name_to_code(country) years_vect = [x for x in range(years[0], years[1] + 1)] list_of_code[country] = \ session.query(func.max(Gdp.gdp)).filter_by(CountryCode=name).filter(Gdp.Year.in_(years_vect)).first()[0] for elt in list(list_of_code.items()): if elt[1] == '': list_of_code[elt[0]] = 0 session.close() return max(list(list_of_code.values())), list_of_code def min_growth(self, listOfCountries, years): ''' Returns the minimum growth of each countries of listOfCountries for the given period years, and the global minimum :param listOfCountries: :param years: :return: global min and min for each country ''' data_tables = create_engine('sqlite:///world-gdp.db') Session = sessionmaker(bind=data_tables) session = Session() list_of_code = {} for country in listOfCountries: name = self.name_to_code(country) years_vect = [x for x in range(years[0], years[1] + 1)] list_of_code[country] = \ session.query(func.min(Gdp.growth)).filter_by(CountryCode=name).filter( Gdp.Year.in_(years_vect)).first()[0] for elt in list(list_of_code.items()): if elt[1] == '': list_of_code[elt[0]] = 0 session.close() return min(list(list_of_code.values())), list_of_code def max_growth(self, listOfCountries, years): ''' Returns the maximum growth of each countries of listOfCountries for the given period years, and the global maximum :param listOfCountries: :param years: :return: global max and max for each country ''' data_tables = create_engine('sqlite:///world-gdp.db') Session = sessionmaker(bind=data_tables) session = Session() list_of_code = {} for country in listOfCountries: name = self.name_to_code(country) years_vect = [x for x in range(years[0], years[1] + 1)] list_of_code[country] = \ session.query(func.max(Gdp.growth)).filter_by(CountryCode=name).filter( Gdp.Year.in_(years_vect)).first()[0] for elt in list(list_of_code.items()): if elt[1] == '': list_of_code[elt[0]] = 0 session.close() return max(list(list_of_code.values())), list_of_code def production_growth(self, country_list, years): production_dic = {} for prod in self.F.list_products(): production_dic[prod] = [0, 0] for country in country_list: for prod in self.F.list_products_country(country): production_dic[prod][0] += self.F.average_production( [country], years, prod)[country] production_dic[prod][1] += self.F.average_production( [country], [years[0] - 5, years[0] - 1], prod)[country] conclusion = {'last 5 years growth': 0, 'period growth': 0} for prod in list(production_dic.keys()): conclusion['last 5 years growth'] += production_dic[prod][1] conclusion['period growth'] += production_dic[prod][0] return conclusion def av_gdp_growth_prod(self, countries_list, years_list, production_type): ''' Returns a list with the countries and their average gdp, growth and production in years_list ''' data_tables = create_engine('sqlite:///world-gdp.db') Session = sessionmaker(bind=data_tables) session = Session() gdp = [] growth = [] prod = [] f = Fao() result_list = {} for country in countries_list: growth.append( list(self.average_growth([country], years_list).values())[0]) gdp.append( list(self.average_gdp([country], years_list).values())[0]) prod.append( list( f.average_production([country], years_list, production_type, "Food").values())[0]) result_list[country] = [ "average growth: " + str( list(self.average_growth( [country], years_list).values())[0]), "average gdp: " + str(list(self.average_gdp([country], years_list).values())[0]), "average production: " + str( list( f.average_production([country], years_list, production_type, "Food").values())[0]) ] return result_list print(prod) session.close() def conclusion_gdp_growth_prod(self, countries_list, year_range_1, year_range_2, production_type): ''' Returns a list with the countries and their average gdp, growth and production in years_list ''' data_tables = create_engine('sqlite:///world-gdp.db') Session = sessionmaker(bind=data_tables) session = Session() gdp = [] growth = [] prod = [] diff_growth = [] diff_gdp = [] diff_prod = [] f = Fao() diff = [] for country in countries_list: for fao_country in f.list_countries(): if self.similar(country, fao_country) == 1: growth.append( list( self.average_growth([country], year_range_1).values())[0]) gdp.append( list( self.average_gdp([country], year_range_1).values())[0]) prod.append( list( f.average_production([country], year_range_1, production_type).values())[0]) growth.append( list( self.average_growth([country], year_range_2).values())[0]) gdp.append( list( self.average_gdp([country], year_range_2).values())[0]) prod.append( list( f.average_production([country], year_range_2, production_type).values())[0]) break for i in range(len(growth)): if growth[i] == None: growth[i] = 0 if gdp[i] == None: gdp[i] = 0 if prod[i] == None: prod[i] = 0 for i in range(0, len(countries_list), 2): diff_growth.append(growth[i + 1] - growth[i]) diff_gdp.append(gdp[i + 1] - gdp[i]) diff_prod.append(prod[i + 1] - prod[i]) for i in range(len(diff_prod)): diff += [ str(countries_list[i]) + ": 'growth difference' : " + str(diff_growth[i]) + ": 'gdp difference' : " + str(diff_gdp[i]) + ", production difference : " + str(diff_prod[i]) ] print('\n') return diff session.close()
for i in range(len(diff_prod)): diff += [ str(countries_list[i]) + ": 'growth difference' : " + str(diff_growth[i]) + ": 'gdp difference' : " + str(diff_gdp[i]) + ", production difference : " + str(diff_prod[i]) ] print('\n') return diff session.close() L = [ 'France', 'Brazil', 'Angola', 'Spain', 'Algeria', 'Madagascar', 'Mali', 'Argentina' ] a = ['Brazil', 'Angola', 'Algeria', 'Madagascar', 'Argentina'] A = Analyse() f = Fao() print(A.world_health([1981, 1983])) print( A.conclusion_gdp_growth_prod(L, [1976, 1980], [1981, 1983], f.list_products_countries(L))) print( A.conclusion_gdp_growth_prod(a, [2000, 2001], [2003, 2006], f.list_products_countries(a)))
list(f.average_production([country], year_range_2).values())[0]) break for i in range(len(growth)): if growth[i] == None: growth[i] = 0 if prod[i] == None: prod[i] = 0 for i in range(0, len(growth), 2): diff_growth.append(growth[i + 1] - growth[i]) diff_prod.append(prod[i + 1] - prod[i]) for i in range(len(diff_prod)): diff += str(countries_list[i]) + ": 'average growth difference' : " + str( diff_growth[i]) + ", 'average production difference' : " + str( diff_prod[i]) + "\n" return diff session.close() L = ['France', 'Brazil', 'Angola', 'Spain', 'Algeria', 'Madagascar', 'Mali', 'Argentina'] A = Analyse() f = Fao() print(A.world_health([1981, 1983])) print(A.conclusion_gdp_growth_prod(L, [1981, 1983], f.list_products_countries(L))) print(A.conclusion_gdp_growth_prod(L, [2003, 2006], f.list_products_countries(L)))
def __init__(self): ''' Initializes the class ''' self.fao1 = Fao()