Beispiel #1
0
def one_point_hybridization_knn_result(forest_old, feature_list, trainx, trainy, predictx, predicty,loop,neighbor):
    res = {}
    for i in range(0, loop):
        forest, forest_new = one_point_hybridization_knn(forest_old, feature_list, trainx, trainy, predictx, predicty,neighbor)
        forest_list = sorted(forest.items(), key=lambda item:(item[1],item[0]), reverse=True)
        forest_next = []
        for j in range(0, 10):
            forest_next.append(forest_old[j])
        for j in range(0, 30):
            forest_next.append(num_to_list(forest_list[j][0]))
        gene_mutation_list = []
        for j in range(30, 40):
            gene_mutation_list.append(num_to_list(forest_list[j][0]))
        positive_table, nagative_table = calculate_table_knn(gene_mutation_list, feature_list, trainx, trainy, predictx,
                                                             predicty,neighbor)
        for j in range(0, 10):
            forest_next.append(gene_mutation(positive_table, nagative_table))

        forest_old = forest_next
        # res.append(forest_list[0][1])
        res[forest_list[0][0]]=forest_list[0][1]
    first=sorted(res.items(), key=lambda item:(item[1],item[0]),reverse=True)[0]
    return first
Beispiel #2
0
def one_point_hybridization_train_tree_high_result(forest_old, feature_list,
                                                   trainx, trainy, predictx,
                                                   predicty, loop):
    res = {}
    for i in range(0, loop):
        forest, forest_new = one_point_hybridization_train_tree(
            forest_old, feature_list, trainx, trainy, predictx, predicty)
        forest_list = sorted(forest.items(),
                             key=lambda item: (item[1], item[0]),
                             reverse=True)
        forest_next = []
        for j in range(0, 10):
            forest_next.append(forest_old[j])
        for j in range(0, 40):
            forest_next.append(num_to_list(forest_list[j][0]))
        forest_old = forest_next
        # res.append(forest_list[0][1])
        res[forest_list[0][0]] = forest_list[0][1]
    first = sorted(res.items(),
                   key=lambda item: (item[1], item[0]),
                   reverse=True)[0]
    return first
Beispiel #3
0
        # print 'predict_sample',predict_sample
        # print 'predict_y',predicty
        acc = train_knn(train_sample, trainy, predict_sample, predicty, 1)

        num_string = num_to_string(num)
        forest[num_string] = acc

    # forest_area = []
    forest_old = init_forest
    res = {}
    for i in range(0, 5):
        forest, forest_new = one_point_hybridization_knn(
            forest_old, feature_list, trainx, trainy, predictx, predicty, 1)
        forest_list = sorted(forest.items(),
                             key=lambda item: item[1],
                             reverse=True)
        forest_next = []
        for j in range(0, 10):
            forest_next.append(forest_old[j])
        for j in range(0, 40):
            forest_next.append(num_to_list(forest_list[j][0]))
        forest_old = forest_next
        res[forest_list[0][0]] = forest_list[0][1]

        # for j in forest_list:
        #     print j
        # forest_area.append(string_to_numlist(forest_list[0][0]))
    ans = sorted(res.items(), key=lambda item: item[1], reverse=True)
    for i in ans:
        print 'accuracy=', i[1], 'DR=', calculate_DR(i[0])