Beispiel #1
0
def update_data():
    global img, animation_grid, updateTime, fps, data1, ptr1, temp_index_y, temp_index_x
    data1 = np.roll(data1, -1)
    data = a.propagate(ecg=True)
    data = ani_convert(data,
                       shape=a.shape,
                       rp=a.rp,
                       animation_grid=animation_grid)
    voltage = e.voltage(data, (temp_index_y, temp_index_x))
    data1[-1] = voltage
    ptr1 += 1
    curve.setData(data1)
    curve.setPos(ptr1, 0)
    time.sleep(1 / 120.)  # gives larger more stable fps.
    img.setImage(data.T, levels=(0, 50))

    QtCore.QTimer.singleShot(1, update_data)
    now = ptime.time()
    fps2 = 1.0 / (now - updateTime)
    updateTime = now
    fps = fps * 0.9 + fps2 * 0.1
    constrainedx = [20, 179]

    ecg_num = 0  #Num of ECGs
    process_list = []  # process list
    final_rotor_position = None  # Final rotor position tuple
    ECG_start_flag = False  # Setting measurment flag to False (ecg measurments start when flag is triggered).
    ECG_located_flag = False  # To keep the system propogating until the rotor is found or limit is reached.

    state = 0  # State for pipe work.

    while not ECG_located_flag:

        # Propogates model and converts into ani_data (used in ecg data processing)
        data = a.propagate(ecg=True)
        data = ani_convert(data,
                           shape=a.shape,
                           rp=a.rp,
                           animation_grid=animation_grid)

        # If flag triggered, then start taking measurments.
        if ECG_start_flag:
            process_list.append(copy.deepcopy(data))

        ptr1 += 1

        if ptr1 >= stability_time:
            if not ECG_start_flag:
                ECG_start_flag = True

            if ptr1 % process_length == 0 and ptr1 != stability_time:
                sample = rt_ecg_gathering(process_list,
                                          sign_para='record_sign')
def update_data():
    global updateTime, fps, ptr1, process_list, ECG_start_flag, state, vsign_short_memory, constrainedy, constrainedx
    global current_ecg_y_pos, current_ecg_x_pos, y_short_memory, x_short_memory, ecg_count, previousR, prev_y_vector
    global prev_x_vector, hsign_short_memory

    data = a.propagate(ecg=True)
    data = ani_convert(data,
                       shape=a.shape,
                       rp=a.rp,
                       animation_grid=animation_grid)

    # Initial Crosshair drawing
    if ptr1 == 0:
        yUline.setPos(constrainedx[1])
        yLline.setPos(constrainedx[0])
        xUline.setPos(300)
        xLline.setPos(300)
        vLine.setPos(current_ecg_x_pos + 0.5)
        hLine.setPos(current_ecg_y_pos + 0.5)

    # If flag triggered, then start taking measurments.
    if ECG_start_flag:
        process_list.append(copy.deepcopy(data))

    ptr1 += 1

    if ptr1 >= stability_time:
        if not ECG_start_flag:
            ECG_start_flag = True

        if ptr1 % process_length == 0 and ptr1 != stability_time:

            if state == 0:
                sample, bsigns = rt_ecg_gathering(
                    process_list, sign_para="record_sign_plus"
                )  # ECG Recording and feature gathering
                ecg_count += 1
                sample = sample.reshape(
                    1, -1)  # Get deprication warning if this is not done.
                vsign = sample[0, :][-3]
                # hsign = sample[0, :][-2]
                # print hsign
                # constrainedx = autojump_constrainx(h_sign = hsign, constrained_ = constrainedx, x_pos = current_ecg_x_pos, constrainedy = constrainedy)
                # con_midpoint = int(np.mean(constrainedx))
                # current_ecg_x_pos = con_midpoint
                # first potential x constraint
                # sample_ = sample[0, :][0:-3].reshape(1, -1)  # Get sample without sign information.
                sample_ = sample[0, :][0:].reshape(1, -1)
                y_class_value = y_class.predict(sample_)[0]
                y_probarg = reg_predictor(
                    y_classifier_full.predict_proba(sample_)[0, :])

                if y_class_value == 1:
                    state = 1  # Change to state 1 for y axis regression/classification.
                    del y_short_memory
                    y_short_memory = []
                    del vsign_short_memory
                    vsign_short_memory = []
                    # del constrainedy
                    # constrainedy = [None, None]
                    x_class_value = x_class.predict(sample_)[0]

                    if x_class_value == 1:
                        previousR = "******"
                        del y_short_memory
                        y_short_memory = []
                        del vsign_short_memory
                        vsign_short_memory = []
                        # del constrainedy
                        # constrainedy = [None, None]
                        current_ecg_y_pos = randint(
                            20, 179)  # reseting the process.
                        current_ecg_x_pos = randint(20, 179)
                        state = 0
                        ecg_count = 0
                        constrainedy = [None, None]
                        constrainedx = [20, 179]
                        yUline.setPos(constrainedx[1])
                        yLline.setPos(constrainedx[0])
                        xUline.setPos(300)
                        xLline.setPos(300)

                if y_class_value == 0:
                    y_short_memory.append(current_ecg_y_pos)
                    vsign_short_memory.append(vsign)
                    constrainedy, vsign_short_memory = constrained_finder(
                        prev_y_vector, vsign_short_memory, current_ecg_y_pos,
                        constrainedy)
                    if condistance(constrainedy) == 1:
                        state = 1
                        x_class_value = x_class.predict(sample_)[0]

                        if x_class_value == 1:
                            previousR = "******"
                            # reseting the process.
                            del y_short_memory
                            y_short_memory = []
                            del vsign_short_memory
                            vsign_short_memory = []
                            # del constrainedy
                            # constrainedy = [None, None]
                            current_ecg_y_pos = randint(0, 199)
                            current_ecg_x_pos = randint(20, 179)
                            state = 0
                            ecg_count = 0
                            constrainedy = [None, None]
                            constrainedx = [20, 179]
                            yUline.setPos(constrainedx[1])
                            yLline.setPos(constrainedx[0])
                            xUline.setPos(300)
                            xLline.setPos(300)

                    else:
                        likelyp = prediction(y_probarg,
                                             vector_constraint=vecdistance(
                                                 current_ecg_y_pos,
                                                 constrainedy),
                                             axis='x')
                        y_vector = y_classifier_full.classes_[likelyp]
                        prev_y_vector = y_vector
                        # if np.abs(y_vector) > 3:
                        #     pad_place = np.where(np.array(constrainedy) == current_ecg_y_pos)[0][0]
                        #     if pad_place == 1:
                        #         cons
                        current_ecg_y_pos -= y_vector
                        # print y_vector

                        if current_ecg_y_pos > 199 or current_ecg_y_pos < 0:
                            current_ecg_y_pos %= 200

                        # if current_ecg_y_pos in y_short_memory:
                        #     print "Loop Y condition"
                        #     loop_place = np.where(np.array(constrainedy) == current_ecg_y_pos)[0][0]
                        #     if loop_place == 0:
                        #         current_ecg_y_pos += 1
                        #         if current_ecg_y_pos > 199:
                        #             current_ecg_y_pos %= 200
                        #         constrainedy[0] += 1
                        #         if constrainedy[0] > 199:
                        #             constrainedy[0] %= 200
                        #     if loop_place == 1:
                        #         current_ecg_y_pos -= 1
                        #         if current_ecg_y_pos < 0:
                        #             current_ecg_y_pos %= 200
                        #         constrainedy[1] -= 1
                        #         if constrainedy[1] < 0:
                        #             constrainedy[1] %= 200

            if state == 1:
                sample, bsigns = rt_ecg_gathering(
                    process_list,
                    sign_para='record_sign_plus')  # ECG feature Recording
                ecg_count += 1
                sample = sample.reshape(
                    1, -1)  # Get deprication warning if this is not done.
                hsign = sample[0, :][-2]  # Gets the h sign
                # sample_ = sample[0, :][0:-3].reshape(1, -1)  # Takes a sample without sign
                sample_ = sample[0, :][:].reshape(
                    1, -1)  # Takes a sample without sign information
                x_probarg = reg_predictor(
                    x_classifier_full.predict_proba(sample_)[0, :])  # Prob map
                x_class_value = x_class.predict(sample_)[0]

                if x_class_value == 1:
                    previousR = "******"
                    current_ecg_x_pos = randint(20, 179)
                    current_ecg_y_pos = randint(0, 199)
                    state = 0
                    ecg_count = 0
                    del x_short_memory
                    x_short_memory = []
                    del hsign_short_memory
                    hsign_short_memory = []
                    del constrainedx
                    constrainedy = [None, None]
                    constrainedx = [20, 179]
                    yUline.setPos(constrainedx[1])
                    yLline.setPos(constrainedx[0])
                    xUline.setPos(300)
                    xLline.setPos(300)

                if x_class_value == 0:
                    x_short_memory.append(current_ecg_x_pos)
                    hsign_short_memory.append(hsign)
                    constrainedx, hsign_short_memory = constrained_finder(
                        prev_x_vector, hsign_short_memory, current_ecg_x_pos,
                        constrainedx)
                    if condistance(constrainedx) == 1:
                        previousR = "******"
                        state = 1
                        del x_short_memory
                        x_short_memory = []
                        del hsign_short_memory
                        hsign_short_memory = []
                        del constrainedx
                        constrainedx = [20, 179]
                        current_ecg_x_pos = randint(20, 179)
                        current_ecg_y_pos = randint(0, 199)
                        state = 0
                        ecg_count = 0
                        constrainedy = [None, None]
                        constrainedx = [20, 179]
                        yUline.setPos(constrainedx[1])
                        yLline.setPos(constrainedx[0])
                        xUline.setPos(300)
                        xLline.setPos(300)

                    else:
                        likelyp = prediction(x_probarg,
                                             vector_constraint=vecdistance(
                                                 current_ecg_x_pos,
                                                 constrainedx),
                                             axis='y')
                        x_vector = x_classifier_full.classes_[likelyp]
                        prev_x_vector = x_vector
                        current_ecg_x_pos -= x_vector

                        if current_ecg_x_pos > 199 or current_ecg_x_pos < 0:
                            current_ecg_x_pos %= 200

                        if current_ecg_x_pos in x_short_memory:
                            print "X LOOP condition."
                            loop_place = np.where(
                                np.array(constrainedx) ==
                                current_ecg_x_pos)[0][0]
                            if loop_place == 0:
                                current_ecg_x_pos += 1
                                if current_ecg_x_pos > 199:
                                    current_ecg_x_pos %= 200
                                constrainedx[0] += 1
                                if constrainedx[0] > 199:
                                    constrainedx[0] %= 200
                            if loop_place == 1:
                                current_ecg_x_pos -= 1
                                if current_ecg_x_pos < 0:
                                    current_ecg_x_pos %= 200
                                constrainedx[1] -= 1
                                if constrainedx[1] < 0:
                                    constrainedx[1] %= 200

            ecg_processing.reset_singlegrid(
                (current_ecg_y_pos, current_ecg_x_pos))
            if constrainedy[0] is not None:
                xLline.setPos(constrainedy[0])
            if constrainedy[1] is not None:
                xUline.setPos(constrainedy[1])
            yLline.setPos(constrainedx[0])
            yUline.setPos(constrainedx[1])
            vLine.setPos(current_ecg_x_pos + 0.5)
            hLine.setPos(current_ecg_y_pos + 0.5)

            del process_list
            process_list = []
            update_label_text(cp_x_pos, cp_y_pos, current_ecg_x_pos,
                              current_ecg_y_pos, ecg_count, previousR,
                              constrainedy, constrainedx)

    time.sleep(1 / 120.)  # gives more stable fps.
    img.setImage(data.T)  # puts animation grid on image.

    # Stuff to do with time and fps.
    QtCore.QTimer.singleShot(1, update_data)
    now = ptime.time()
    fps2 = 1.0 / (now - updateTime)
    updateTime = now
    fps = fps * 0.9 + fps2 * 0.1
def update_data():
    global updateTime, fps, ptr1, process_list, ECG_start_flag, state, vsign_short_memory, constrainedy, constrainedx
    global current_ecg_y_pos, current_ecg_x_pos, y_short_memory, x_short_memory, ecg_count, previousR, prev_y_vector
    global prev_x_vector, hsign_short_memory, num_ypos_class, num_xpos_class, num_Yloops, num_Xloops, num_yconstraint
    global num_xconstraint, num_xzjump, num_yzjump

    data = a.propagate(ecg=True)
    data = ani_convert(data,
                       shape=a.shape,
                       rp=a.rp,
                       animation_grid=animation_grid)

    # Initial Crosshair drawing
    if ptr1 == 0:
        yUline.setPos(constrainedx[1])
        yLline.setPos(constrainedx[0])
        xUline.setPos(300)
        xLline.setPos(300)
        vLine.setPos(current_ecg_x_pos + 0.5)
        hLine.setPos(current_ecg_y_pos + 0.5)

    # If flag triggered, then start taking measurments.
    if ECG_start_flag:
        process_list.append(copy.deepcopy(data))

    ptr1 += 1

    if ptr1 >= stability_time:
        if not ECG_start_flag:
            ECG_start_flag = True

        if ptr1 % process_length == 0 and ptr1 != stability_time:

            sample = rt_ecg_gathering(
                process_list,
                sign_para=args[5])  # ECG Recording and feature gathering
            ecg_count += 1

            if state == 0:
                sample = sample.reshape(
                    1, -1)  # Get deprication warning if this is not done.
                vsign = sample[0, :][-3]
                # first potential x constraint
                # sample_ = sample[0, :][0:-3].reshape(1, -1)  # Get sample without sign information.
                y_class_value = y_class.predict(sample)[0]
                y_probarg = movingaverage(
                    y_classifier_full.predict_proba(sample)[0, :], 10)

                if y_class_value == 1:
                    state = 1  # Change to state 1 for y axis regression/classification.
                    del y_short_memory
                    y_short_memory = []
                    del vsign_short_memory
                    vsign_short_memory = []
                    x_class_value = x_class.predict(sample)[0]
                    num_ypos_class += 1

                    if x_class_value == 1:
                        previousR = "******" % (current_ecg_x_pos,
                                                  current_ecg_y_pos)
                        del y_short_memory
                        y_short_memory = []
                        del vsign_short_memory
                        vsign_short_memory = []
                        del constrainedy
                        constrainedy = [None, None]
                        current_ecg_y_pos = randint(
                            20, 179)  # reseting the process.
                        current_ecg_x_pos = randint(20, 179)
                        state = 0
                        ecg_count = 0
                        yUline.setPos(constrainedx[1])
                        yLline.setPos(constrainedx[0])
                        xUline.setPos(300)
                        xLline.setPos(300)
                        num_xpos_class += 1

                if y_class_value == 0:
                    y_short_memory.append(current_ecg_y_pos)
                    vsign_short_memory.append(vsign)
                    constrainedy, vsign_short_memory = constrained_finder(
                        prev_y_vector,
                        vsign_short_memory,
                        current_ecg_y_pos,
                        constrainedy,
                        axis='x')
                    if condistance(constrainedy) == 1:
                        state = 1
                        x_class_value = x_class.predict(sample)[0]
                        num_yconstraint += 1

                        if x_class_value == 1:
                            previousR = "******" % (
                                current_ecg_x_pos, current_ecg_y_pos)
                            # reseting the process.
                            del y_short_memory
                            y_short_memory = []
                            del vsign_short_memory
                            vsign_short_memory = []
                            del constrainedy
                            constrainedy = [None, None]
                            current_ecg_y_pos = randint(0, 199)
                            current_ecg_x_pos = randint(20, 179)
                            state = 0
                            ecg_count = 0
                            num_xpos_class += 1
                            yUline.setPos(constrainedx[1])
                            yLline.setPos(constrainedx[0])
                            xUline.setPos(300)
                            xLline.setPos(300)

                    else:
                        likelyp = prediction(y_probarg,
                                             vector_constraint=vecdistance(
                                                 current_ecg_y_pos,
                                                 constrainedy),
                                             axis='x')
                        y_vector = y_classifier_full.classes_[likelyp]

                        if y_vector == 0:
                            state = 1  # Change to state 1 for y axis regression/classification.
                            del y_short_memory
                            y_short_memory = []
                            del vsign_short_memory
                            vsign_short_memory = []
                            x_class_value = x_class.predict(sample)[0]
                            num_yzjump += 1

                            if x_class_value == 1:
                                previousR = "******" % (
                                    current_ecg_x_pos, current_ecg_y_pos)
                                del y_short_memory
                                y_short_memory = []
                                del vsign_short_memory
                                vsign_short_memory = []
                                del constrainedy
                                constrainedy = [None, None]
                                current_ecg_y_pos = randint(
                                    20, 179)  # reseting the process.
                                current_ecg_x_pos = randint(20, 179)
                                state = 0
                                ecg_count = 0
                                num_xpos_class += 1
                                yUline.setPos(constrainedx[1])
                                yLline.setPos(constrainedx[0])
                                xUline.setPos(300)
                                xLline.setPos(
                                    300
                                )  # If it predicts a jump of 0, then take the position it's on.

                        prev_y_vector = y_vector
                        current_ecg_y_pos -= y_vector

                        if current_ecg_y_pos > 199 or current_ecg_y_pos < 0:
                            current_ecg_y_pos %= 200

            if state == 1:
                sample = sample.reshape(
                    1, -1)  # Get deprication warning if this is not done.
                hsign = sample[0, :][-2]  # Gets the h sign
                # sample_ = sample[0, :][0:-3].reshape(1, -1)  # Takes a sample without sign information
                x_probarg = movingaverage(
                    x_classifier_full.predict_proba(sample)[0, :],
                    10)  # Prob map
                x_class_value = x_class.predict(sample)[0]

                if x_class_value == 1:
                    previousR = "******" % (current_ecg_x_pos,
                                              current_ecg_y_pos)
                    current_ecg_x_pos = randint(20, 179)
                    current_ecg_y_pos = randint(0, 199)
                    state = 0
                    ecg_count = 0
                    del x_short_memory
                    x_short_memory = []
                    del hsign_short_memory
                    hsign_short_memory = []
                    del constrainedx
                    constrainedx = [20, 179]
                    del constrainedy
                    constrainedy = [None, None]
                    num_xpos_class += 1
                    yUline.setPos(constrainedx[1])
                    yLline.setPos(constrainedx[0])
                    xUline.setPos(300)
                    xLline.setPos(300)

                if x_class_value == 0:
                    x_short_memory.append(current_ecg_x_pos)
                    hsign_short_memory.append(hsign)
                    constrainedx, hsign_short_memory = constrained_finder(
                        prev_x_vector,
                        hsign_short_memory,
                        current_ecg_x_pos,
                        constrainedx,
                        axis='y')

                    if condistance(
                            constrainedx
                    ) == 1:  # Row is constrained to be have distance 1, take position.
                        previousR = "******" % (
                            current_ecg_x_pos, current_ecg_y_pos)
                        state = 1
                        del x_short_memory
                        x_short_memory = []
                        del hsign_short_memory
                        hsign_short_memory = []
                        del constrainedx
                        constrainedx = [20, 179]
                        del constrainedy
                        constrainedy = [None, None]
                        current_ecg_x_pos = randint(20, 179)
                        current_ecg_y_pos = randint(0, 199)
                        state = 0
                        ecg_count = 0
                        num_xconstraint += 1
                        yUline.setPos(constrainedx[1])
                        yLline.setPos(constrainedx[0])
                        xUline.setPos(300)
                        xLline.setPos(300)

                    else:
                        likelyp = prediction(x_probarg,
                                             vector_constraint=vecdistance(
                                                 current_ecg_x_pos,
                                                 constrainedx),
                                             axis='y')
                        x_vector = x_classifier_full.classes_[likelyp]

                        if x_vector == 0:  # If the predicted X jump is 0
                            previousR = "******" % (
                                current_ecg_x_pos, current_ecg_y_pos)
                            current_ecg_x_pos = randint(20, 179)
                            current_ecg_y_pos = randint(0, 199)
                            state = 0
                            ecg_count = 0
                            num_xzjump += 1
                            del x_short_memory
                            x_short_memory = []
                            del hsign_short_memory
                            hsign_short_memory = []
                            del constrainedx
                            constrainedx = [20, 179]
                            del constrainedy
                            constrainedy = [None, None]
                            yUline.setPos(constrainedx[1])
                            yLline.setPos(constrainedx[0])
                            xUline.setPos(300)
                            xLline.setPos(300)

                        prev_x_vector = x_vector
                        current_ecg_x_pos -= x_vector

                        if current_ecg_x_pos > 199 or current_ecg_x_pos < 0:
                            current_ecg_x_pos %= 200

                        if current_ecg_x_pos in x_short_memory:
                            previousR = '******' % current_ecg_y_pos
                            state = 1
                            del x_short_memory
                            x_short_memory = []
                            del hsign_short_memory
                            hsign_short_memory = []
                            del constrainedx
                            constrainedx = [20, 179]
                            del constrainedy
                            constrainedy = [None, None]
                            current_ecg_x_pos = randint(20, 179)
                            current_ecg_y_pos = randint(0, 199)
                            state = 0
                            ecg_count = 0
                            num_Xloops += 1
                            yUline.setPos(constrainedx[1])
                            yLline.setPos(constrainedx[0])
                            xUline.setPos(300)
                            xLline.setPos(300)

            ecg_processing.reset_singlegrid(
                (current_ecg_y_pos, current_ecg_x_pos))
            if constrainedy[0] is not None:
                xLline.setPos(constrainedy[0])
            if constrainedy[1] is not None:
                xUline.setPos(constrainedy[1])
            yLline.setPos(constrainedx[0])
            yUline.setPos(constrainedx[1])
            vLine.setPos(current_ecg_x_pos + 0.5)
            hLine.setPos(current_ecg_y_pos + 0.5)

            del process_list
            process_list = []
            update_label_text(cp_x_pos, cp_y_pos, current_ecg_x_pos,
                              current_ecg_y_pos, ecg_count, previousR,
                              constrainedy, constrainedx, num_ypos_class,
                              num_xpos_class, num_Yloops, num_Xloops,
                              num_yconstraint, num_xconstraint, num_yzjump,
                              num_xzjump)

    time.sleep(1 / 120.)  # gives more stable fps.
    img.setImage(data.T)  # puts animation grid on image.

    # Stuff to do with time and fps.
    QtCore.QTimer.singleShot(1, update_data)
    now = ptime.time()
    fps2 = 1.0 / (now - updateTime)
    updateTime = now
    fps = fps * 0.9 + fps2 * 0.1
Beispiel #5
0
def update_data():
    global updateTime, fps, ptr1, process_list, ECG_start_flag, state, y_regress_treshold
    global current_ecg_y_pos, current_ecg_x_pos, y_short_memory, x_short_memory

    data = a.propagate(ecg=True)
    data = ani_convert(data,
                       shape=a.shape,
                       rp=a.rp,
                       animation_grid=animation_grid)

    # Initial Crosshair drawing
    if ptr1 == 0:
        vLine.setPos(current_ecg_x_pos + 0.5)
        hLine.setPos(current_ecg_y_pos + 0.5)

    # If flag triggered, then start taking measurments.
    if ECG_start_flag:
        process_list.append(copy.deepcopy(data))

    ptr1 += 1

    if ptr1 >= stability_time:
        if not ECG_start_flag:
            print "Starting Measurment Process"
            ECG_start_flag = True
        if ptr1 % process_length == 0 and ptr1 != stability_time:

            if state == 0:
                # ECG Recording and feature gathering
                sample = rt_ecg_gathering(process_list, "record sign")
                hsign = sample[-2]
                print hsign
                # Get deprication warning if this is not done.
                sample = sample.reshape(1, -1)

                y_class_value = y_estimator.predict(sample)[0]
                print "Y classification: %s" % y_class_value
                y_vector = int(y_regress.predict(sample)[0])
                print "Y Vector prediction: %s" % y_vector

                if y_class_value == 1:
                    # Change to state 1 for y axis regression/classification.
                    state = 1
                    print "Found X-Axis"
                    # Temporary
                    del y_short_memory
                    y_short_memory = []
                    x_class_value = x_class.predict(sample)[0]
                    print "X classification: %s" % x_class_value
                    if x_class_value == 1:
                        print "Found the rotor!"
                        print "Predicted Rotor position: (%s, %s)" % (
                            current_ecg_x_pos, current_ecg_y_pos)
                        # reseting the process.
                        current_ecg_x_pos = randint(30, 169)
                        current_ecg_y_pos = randint(0, 199)
                        state = 0

                if y_class_value == 0:
                    y_short_memory.append(current_ecg_y_pos)
                    current_ecg_y_pos -= y_vector
                    current_ecg_x_pos -= int(3 * hsign * np.absolute(hsign) *
                                             np.absolute(y_vector))
                    if current_ecg_y_pos > 199 or current_ecg_y_pos < 0:  #Is this an error?
                        current_ecg_y_pos %= 200
                    if current_ecg_x_pos > 199 or current_ecg_x_pos < 0:
                        current_ecg_x_pos += int(3 * hsign *
                                                 np.absolute(hsign) *
                                                 np.absolute(y_vector))
                    if current_ecg_y_pos in y_short_memory:
                        print "Entered Y Loop"
                        # print "Loop: %s" % y_short_memory
                        # loop_average = int((float(sum(y_short_memory))/len(y_short_memory)))
                        # print "Loop Average: %s" % loop_average
                        # del y_short_memory
                        # y_short_memory = []
                        # current_ecg_y_pos = loop_average
                        current_ecg_x_pos = randint(30, 169)
                        current_ecg_y_pos = randint(0, 199)

            if state == 1:
                # ECG Recording and feature gathering
                sample = rt_ecg_gathering(process_list, "record sign")
                hsign = sample[-2]
                print hsign
                # Get deprication warning if this is not done.
                sample = sample.reshape(1, -1)

                x_class_value = x_class.predict(sample)[0]
                print "X classification: %s" % x_class_value
                x_vector = int(x_regress.predict(sample)[0])
                print "X Vector prediction: %s" % x_vector

                if x_class_value == 1:
                    print "Found the rotor!"
                    print "Predicted Rotor position: (%s, %s)" % (
                        current_ecg_x_pos, current_ecg_y_pos)
                    # Temporary
                    del x_short_memory
                    x_short_memory = []
                    # reseting the process.
                    current_ecg_x_pos = randint(30, 169)
                    current_ecg_y_pos = randint(0, 199)
                    state = 0

                if x_class_value == 0:
                    x_short_memory.append(current_ecg_x_pos)
                    current_ecg_x_pos -= x_vector + 13
                    if current_ecg_x_pos > 199 or current_ecg_x_pos < 0:
                        current_ecg_x_pos %= 200
                    if current_ecg_x_pos in x_short_memory:
                        print "Entered X Loop"
                        # print "Loop: %s" % x_short_memory
                        # loop_average = int((float(sum(x_short_memory))/len(x_short_memory)))
                        # print "Loop Average: %s" % loop_average
                        # del x_short_memory
                        # x_short_memory = []
                        # current_ecg_x_pos = loop_average
                        current_ecg_x_pos = randint(30, 169)
                        current_ecg_y_pos = randint(0, 199)

            print "New ECG Probe position: (%s, %s)" % (current_ecg_x_pos,
                                                        current_ecg_y_pos)
            print '\n'
            ecg_processing.reset_singlegrid(
                (current_ecg_y_pos, current_ecg_x_pos))
            vLine.setPos(current_ecg_x_pos + 0.5)
            hLine.setPos(current_ecg_y_pos + 0.5)
            del process_list
            process_list = []
            updating_text = """ECG Position: (%s, %s)<br>\n
                               Rotor Position: (%s, %s)""" % (
                current_ecg_x_pos, current_ecg_y_pos, cp_x_pos, cp_y_pos)
            label.setText(updating_text)

    # gives more stable fps.
    time.sleep(1 / 120.)
    # puts animation grid on image.
    img.setImage(data.T)

    # Stuff to do with time and fps.
    QtCore.QTimer.singleShot(1, update_data)
    now = ptime.time()
    fps2 = 1.0 / (now - updateTime)
    updateTime = now
    fps = fps * 0.9 + fps2 * 0.1
def update_data():
    global updateTime, fps, ptr1, process_list, ECG_start_flag, state, vsign_short_memory, constrainedy, constrainedx
    global current_ecg_y_pos, current_ecg_x_pos, y_short_memory, x_short_memory, ecg_count, previousR, prev_y_vector
    global prev_x_vector, hsign_short_memory, num_ypos_class, num_xpos_class, num_Yloops, num_Xloops, num_yconstraint
    global num_xconstraint, num_xzjump, num_yzjump, rotors_found, perminant_constraints, N_rotors, total_sign_info, vconsistent, hconsistent, bconsistent
    global x_history, y_history, special_state, jump_x, special_vsign, special_y

    data = a.propagate(ecg=True)
    data = ani_convert(data,
                       shape=a.shape,
                       rp=a.rp,
                       animation_grid=animation_grid)

    # Initial Crosshair drawing
    if ptr1 == 0:
        yUline.setPos(constrainedx[1])
        yLline.setPos(constrainedx[0])
        xUline.setPos(300)
        xLline.setPos(300)
        pUline.setPos(-300)
        pLline.setPos(-300)
        vLine.setPos(current_ecg_x_pos + 0.5)
        hLine.setPos(current_ecg_y_pos + 0.5)

    # If flag triggered, then start taking measurments.
    if ECG_start_flag:
        process_list.append(copy.deepcopy(data))

    ptr1 += 1

    # CONDITION TO START THE LOCATING PROCESS
    if ptr1 >= stability_time:
        if not ECG_start_flag:
            ECG_start_flag = True

        # CONDITION TO TAKE A MEASURMENT
        if ptr1 % process_length == 0 and ptr1 != stability_time:

            sample, signs = rt_ecg_gathering(
                process_list, sign_para='record_sign_plus'
            )  # ECG Recording and feature gathering
            ecg_count += 1
            total_sign_info.append(signs)
            x_history.append(current_ecg_x_pos)
            y_history.append(current_ecg_y_pos)

            # LOOKING FOR THE ROTORS X AXIS
            if state == 0:
                sample = sample.reshape(
                    1, -1)  # Get deprication warning if this is not done.
                vsign = sample[0, :][-3]
                # first potential x constraint
                # sample_ = sample[0, :][0:-3].reshape(1, -1)  # Get sample without sign information.
                y_class_value = y_class.predict(sample)[0]
                y_probarg = reg_predictor(
                    y_classifier_full.predict_proba(sample)[0, :])

                # POSITIVE CLASSIFICATION FOR Y
                if y_class_value == 1:
                    if special_state:
                        special_state = False
                    state = 1  # Change to state 1 for y axis regression/classification.
                    del y_short_memory
                    y_short_memory = []
                    del vsign_short_memory
                    vsign_short_memory = []
                    x_class_value = x_class.predict(sample)[0]
                    num_ypos_class += 1

                    # CHECKS IF ITS ON THE CORRECT Y AXIS
                    if x_class_value == 1:
                        previousR = "******" % (current_ecg_x_pos,
                                                  current_ecg_y_pos)
                        state = 0
                        ecg_count = 0
                        pred_rotor_y.append(current_ecg_y_pos)
                        pred_rotor_x.append(current_ecg_x_pos)

                        # ALL ROTORS ARE FOUND
                        if rotors_found == N_rotors:
                            current_ecg_y_pos = randint(0, 199)
                            current_ecg_x_pos = randint(20, 179)
                            xUline.setPos(300)
                            xLline.setPos(300)
                            pUline.setPos(-300)
                            pLline.setPos(-300)
                            rotors_found = 0
                            perminant_constraints = []

                        # ONE OF THE ROTORS IS FOUND
                        else:
                            rotors_found += 1
                            upper = current_ecg_y_pos - 5
                            upper %= 200
                            lower = current_ecg_y_pos + 5
                            lower %= 200
                            perminant_constraints.append([lower, upper])

                            xUline.setPos(300)
                            xLline.setPos(300)
                            pUline.setPos(upper)
                            pLline.setPos(lower)
                            xvec, yvec = relative_vectors(
                                x_history, y_history, current_ecg_x_pos,
                                current_ecg_y_pos)
                            xvec = np.array(xvec)
                            yvec = np.array(yvec)

                            for i in range(len(x_history)):

                                vconsistent.append(
                                    check_signs(xvec[i],
                                                yvec[i],
                                                total_sign_info[i][0],
                                                vsign_check,
                                                thr=0.05))
                                hconsistent.append(
                                    check_signs(xvec[i],
                                                yvec[i],
                                                total_sign_info[i][1],
                                                hsign_check,
                                                thr=0.02))
                                bconsistent.append(
                                    check_bsign(total_sign_info[i][-2],
                                                total_sign_info[i][-1]))
                            vconsistent = np.array(vconsistent)[
                                np.absolute(yvec) > 4]
                            hconsistent = np.array(hconsistent)[
                                np.absolute(yvec) > 4]
                            bconsistent = np.array(bconsistent)[
                                np.absolute(yvec) > 4]
                            total_sign_info = np.array(total_sign_info)
                            tsign = total_sign_info[np.absolute(yvec) > 4]
                            yvec_use = yvec[np.absolute(yvec) > 4]
                            xvec_use = xvec[np.absolute(yvec) > 4]
                            special_y = (yvec_use[vconsistent == False] +
                                         current_ecg_y_pos) % 200
                            special_vsign = tsign[:, 0][vconsistent == False]

                            current_ecg_y_pos = (current_ecg_y_pos + 100) % 200
                            special_state = True

                        constrainedy = [None, None]
                        constrainedx = [20, 179]
                        yUline.setPos(constrainedx[1])
                        yLline.setPos(constrainedx[0])
                        num_xpos_class += 1
                        del y_short_memory
                        y_short_memory = []
                        del vsign_short_memory
                        vsign_short_memory = []
                        total_sign_info = []
                        vconsistent = []
                        hconsistent = []
                        bconsistent = []
                        x_history = []
                        y_history = []

                # NEGATIVE CLASSIFIACTION FOR Y
                if y_class_value == 0:
                    y_short_memory.append(current_ecg_y_pos)
                    vsign_short_memory.append(vsign)
                    if not special_state:
                        constrainedy, vsign_short_memory = constrained_finder(
                            prev_y_vector, vsign_short_memory,
                            current_ecg_y_pos, constrainedy, 'x',
                            perminant_constraints)
                    if special_state:
                        constrainedx, constrainedy, jump_x = special_constraint_finder(
                            current_ecg_x_pos, current_ecg_y_pos,
                            total_sign_info, constrainedy, constrainedx,
                            perminant_constraints, special_y, special_vsign)
                        # might need this to fix weird constraints
                        vsign_short_memory = []

                    # CONSTRAINED CONDITION FOR Y
                    if condistance(constrainedy) == 0:
                        state = 0
                        ecg_count = 0
                        num_yconstraint += 1
                        xUline.setPos(300)
                        xLline.setPos(300)
                        constrainedy = [None, None]
                        constrainedx = [20, 179]
                        if rotors_found > 0:
                            current_ecg_y_pos = (pred_rotor_y[-1] + 100) % 200
                        else:
                            current_ecg_y_pos = randint(0, 199)
                        current_ecg_x_pos = randint(20, 179)
                        yUline.setPos(constrainedx[1])
                        yLline.setPos(constrainedx[0])
                        del y_short_memory
                        y_short_memory = []
                        del vsign_short_memory
                        vsign_short_memory = []
                        total_sign_info = []
                        vconsistent = []
                        hconsistent = []
                        bconsistent = []
                        x_history = []
                        y_history = []

                    # MOVING THE PROBE IN THE Y AXIS
                    else:
                        likelyp = prediction(y_probarg,
                                             vector_constraint=vecdistance(
                                                 current_ecg_y_pos,
                                                 constrainedy),
                                             axis='x')
                        y_vector = y_classifier_full.classes_[likelyp]

                        # SPECIAL CONDITION
                        if np.abs(y_vector) > 45 and special_state:
                            print y_vector
                            y_vector = int(45 * copysign(1, y_vector))
                        special_state = False

                        # JUMPS IN THE X DIRECTION AS WELL UNDER SPECIAL CONDITION
                        if jump_x:
                            h = total_sign_info[-1][1]
                            if np.abs(h) > 1.0:
                                print 'constraint jump'
                                if h > 0:
                                    current_ecg_x_pos = int(
                                        (current_ecg_x_pos + 20) / 2.)
                                else:
                                    current_ecg_x_pos = int(
                                        (current_ecg_x_pos + 179) / 2.)

                            else:
                                if 179 - current_ecg_x_pos >= 80:
                                    current_ecg_x_pos += 80
                                else:
                                    current_ecg_x_pos -= 80
                            jump_x = False

                        # IF THE PREDICTED Y JUMP IS ZERO
                        if y_vector == 0:
                            previousR = "******" % (
                                current_ecg_x_pos, current_ecg_y_pos)
                            state = 0
                            ecg_count = 0
                            num_yzjump += 1
                            xUline.setPos(300)
                            xLline.setPos(300)
                            constrainedy = [None, None]
                            constrainedx = [20, 179]
                            if rotors_found > 0:
                                current_ecg_y_pos = (pred_rotor_y[-1] +
                                                     100) % 200
                            else:
                                current_ecg_y_pos = randint(0, 199)
                            current_ecg_x_pos = randint(20, 179)
                            yUline.setPos(constrainedx[1])
                            yLline.setPos(constrainedx[0])
                            del y_short_memory
                            y_short_memory = []
                            del vsign_short_memory
                            vsign_short_memory = []

                        prev_y_vector = y_vector
                        current_ecg_y_pos -= y_vector

                        # WRAPPING AROUND THE BOUNDRY CONDITION
                        if current_ecg_y_pos > 199 or current_ecg_y_pos < 0:
                            current_ecg_y_pos %= 200

                        # Y LOOP FORM CHECK
                        if current_ecg_y_pos in y_short_memory:
                            previousR = '******'
                            state = 0
                            ecg_count = 0
                            num_Yloops += 1
                            xUline.setPos(300)
                            xLline.setPos(300)
                            constrainedy = [None, None]
                            constrainedx = [20, 179]
                            if rotors_found > 0:
                                current_ecg_y_pos = (current_ecg_y_pos +
                                                     100) % 200
                            else:
                                current_ecg_y_pos = randint(0, 199)
                            current_ecg_x_pos = randint(20, 179)
                            yUline.setPos(constrainedx[1])
                            yLline.setPos(constrainedx[0])
                            del y_short_memory
                            y_short_memory = []
                            del vsign_short_memory
                            vsign_short_memory = []
                            total_sign_info = []
                            vconsistent = []
                            hconsistent = []
                            bconsistent = []
                            x_history = []
                            y_history = []

            # LOOKING FOR THE ROTORS Y AXIS
            if state == 1:
                sample = sample.reshape(
                    1, -1)  # Get deprication warning if this is not done.
                hsign = sample[0, :][-2]  # Gets the h sign
                # sample_ = sample[0, :][0:-3].reshape(1, -1)  # Takes a sample without sign information

                x_probarg = reg_predictor(
                    x_classifier_full.predict_proba(sample)[0, :])  # Prob map
                x_class_value = x_class.predict(sample)[0]

                # POSITIVE CLASSIFICATION FOR X
                if x_class_value == 1:
                    previousR = "******" % (current_ecg_x_pos,
                                              current_ecg_y_pos)
                    state = 0
                    ecg_count = 0
                    num_xpos_class += 1
                    pred_rotor_y.append(current_ecg_y_pos)
                    pred_rotor_x.append(current_ecg_x_pos)

                    if rotors_found == N_rotors:
                        xUline.setPos(300)
                        xLline.setPos(300)
                        pUline.setPos(-300)
                        pLline.setPos(-300)
                        current_ecg_x_pos = randint(20, 179)
                        current_ecg_y_pos = randint(0, 199)
                        rotors_found = 0
                        perminant_constraints = []

                    else:
                        rotors_found += 1
                        upper = current_ecg_y_pos - 5
                        upper %= 200
                        lower = current_ecg_y_pos + 5
                        lower %= 200
                        perminant_constraints.append([lower, upper])

                        xUline.setPos(300)
                        xLline.setPos(300)
                        pUline.setPos(upper)
                        pLline.setPos(lower)
                        xvec, yvec = relative_vectors(x_history, y_history,
                                                      current_ecg_x_pos,
                                                      current_ecg_y_pos)
                        xvec = np.array(xvec)
                        yvec = np.array(yvec)

                        for i in range(len(x_history)):

                            vconsistent.append(
                                check_signs(xvec[i],
                                            yvec[i],
                                            total_sign_info[i][0],
                                            vsign_check,
                                            thr=0.05))
                            hconsistent.append(
                                check_signs(xvec[i],
                                            yvec[i],
                                            total_sign_info[i][1],
                                            hsign_check,
                                            thr=0.02))
                            bconsistent.append(
                                check_bsign(total_sign_info[i][-2],
                                            total_sign_info[i][-1]))
                        vconsistent = np.array(vconsistent)[
                            np.absolute(yvec) > 4]
                        hconsistent = np.array(hconsistent)[
                            np.absolute(yvec) > 4]
                        bconsistent = np.array(bconsistent)[
                            np.absolute(yvec) > 4]
                        total_sign_info = np.array(total_sign_info)
                        tsign = total_sign_info[np.absolute(yvec) > 4]
                        yvec_use = yvec[np.absolute(yvec) > 4]
                        xvec_use = xvec[np.absolute(yvec) > 4]
                        special_y = (yvec_use[vconsistent == False] +
                                     current_ecg_y_pos) % 200
                        special_vsign = tsign[:, 0][vconsistent == False]

                        current_ecg_y_pos = (current_ecg_y_pos + 100) % 200
                        special_state = True

                    constrainedy = [None, None]
                    constrainedx = [20, 179]
                    yUline.setPos(constrainedx[1])
                    yLline.setPos(constrainedx[0])
                    del x_short_memory
                    x_short_memory = []
                    del hsign_short_memory
                    hsign_short_memory = []
                    total_sign_info = []
                    vconsistent = []
                    hconsistent = []
                    bconsistent = []
                    x_history = []
                    y_history = []

                # NEGATIVE CLASSIFICATION FOR X
                if x_class_value == 0:
                    x_short_memory.append(current_ecg_x_pos)
                    hsign_short_memory.append(hsign)
                    constrainedx, hsign_short_memory = constrained_finder(
                        prev_x_vector, hsign_short_memory, current_ecg_x_pos,
                        constrainedx, 'y', perminant_constraints)

                    # CONSTRAINED CONDITION FOR X
                    if condistance(
                            constrainedx
                    ) == 0:  # Row is constrained to be have distance 1, take position.
                        previousR = "******" % (
                            current_ecg_x_pos, current_ecg_y_pos)
                        state = 0
                        ecg_count = 0
                        num_xconstraint += 1
                        xUline.setPos(300)
                        xLline.setPos(300)
                        constrainedy = [None, None]
                        constrainedx = [20, 179]
                        if rotors_found > 0:
                            current_ecg_y_pos = (pred_rotor_y[-1] + 100) % 200
                        else:
                            current_ecg_y_pos = randint(0, 199)
                        current_ecg_x_pos = randint(20, 179)
                        yUline.setPos(constrainedx[1])
                        yLline.setPos(constrainedx[0])
                        del x_short_memory
                        x_short_memory = []
                        del hsign_short_memory
                        hsign_short_memory = []
                        total_sign_info = []
                        x_history = []
                        y_history = []
                        vconsistent = []
                        hconsistent = []
                        bconsistent = []

                    # MOVING THE PROBE IN THE X AXIS
                    else:
                        likelyp = prediction(x_probarg,
                                             vector_constraint=vecdistance(
                                                 current_ecg_x_pos,
                                                 constrainedx),
                                             axis='y')
                        x_vector = x_classifier_full.classes_[likelyp]

                        # IF THE PREDICTED JUMP IS ZERO
                        if x_vector == 0:  # If the predicted X jump is 0
                            previousR = "******" % (
                                current_ecg_x_pos, current_ecg_y_pos)
                            state = 0
                            ecg_count = 0
                            num_xzjump += 1
                            xUline.setPos(300)
                            xLline.setPos(300)
                            constrainedy = [None, None]
                            constrainedx = [20, 179]
                            if rotors_found > 0:
                                current_ecg_y_pos = (pred_rotor_y[-1] +
                                                     100) % 200
                            else:
                                current_ecg_y_pos = randint(0, 199)
                            current_ecg_x_pos = randint(20, 179)
                            yUline.setPos(constrainedx[1])
                            yLline.setPos(constrainedx[0])
                            del x_short_memory
                            x_short_memory = []
                            del hsign_short_memory
                            hsign_short_memory = []
                            total_sign_info = []
                            x_history = []
                            y_history = []
                            vconsistent = []
                            hconsistent = []
                            bconsistent = []

                        prev_x_vector = x_vector
                        current_ecg_x_pos -= x_vector

                        # WRAPPING AROUND THE BOUNDRY
                        if current_ecg_x_pos > 199 or current_ecg_x_pos < 0:
                            current_ecg_x_pos %= 200

                        # X LOOP FORM CHECK
                        if current_ecg_x_pos in x_short_memory:
                            previousR = '******' % current_ecg_y_pos
                            state = 0
                            ecg_count = 0
                            num_Xloops += 1
                            xUline.setPos(300)
                            xLline.setPos(300)
                            constrainedy = [None, None]
                            constrainedx = [20, 179]
                            if rotors_found > 0:
                                current_ecg_y_pos = (pred_rotor_y[-1] +
                                                     100) % 200
                            else:
                                current_ecg_y_pos = randint(0, 199)
                            current_ecg_x_pos = randint(20, 179)
                            yUline.setPos(constrainedx[1])
                            yLline.setPos(constrainedx[0])
                            del x_short_memory
                            x_short_memory = []
                            del hsign_short_memory
                            hsign_short_memory = []
                            total_sign_info = []
                            x_history = []
                            y_history = []
                            vconsistent = []
                            hconsistent = []
                            bconsistent = []

            # UPDATING LINES AND PREPARING FOR NEW MEASURMENT
            ecg_processing.reset_singlegrid(
                (current_ecg_y_pos, current_ecg_x_pos))
            if constrainedy[0] is not None:
                xLline.setPos(constrainedy[0])
            if constrainedy[1] is not None:
                xUline.setPos(constrainedy[1])
            yLline.setPos(constrainedx[0])
            yUline.setPos(constrainedx[1])
            vLine.setPos(current_ecg_x_pos + 0.5)
            hLine.setPos(current_ecg_y_pos + 0.5)

            del process_list
            process_list = []
            update_label_text(cp_x_pos, cp_y_pos, cp_x_pos2, cp_y_pos2,
                              current_ecg_x_pos, current_ecg_y_pos, ecg_count,
                              previousR, constrainedy, constrainedx,
                              perminant_constraints, num_ypos_class,
                              num_xpos_class, num_Yloops, num_Xloops,
                              num_yconstraint, num_xconstraint, num_yzjump,
                              num_xzjump)

    # time.sleep(1/120.)  # gives more stable fps.
    img.setImage(data.T)  # puts animation grid on image.

    # Stuff to do with time and fps.
    QtCore.QTimer.singleShot(1, update_data)
    now = ptime.time()
    fps2 = 1.0 / (now - updateTime)
    updateTime = now
    fps = fps * 0.9 + fps2 * 0.1
Beispiel #7
0
def update_data():
    global updateTime, fps, ptr1, process_list, ECG_start_flag, state, y_regress_treshold
    global current_ecg_y_pos, current_ecg_x_pos, y_short_memory, x_short_memory, ecg_count, previousR

    # resets the tissue if rotor is found or loop is reached. (Needs work
    # (have to reset the time before a measurment is taken.))
    # if tissue_reset:
    #     a = ps.Heart(nu=0.2, delta=0.0, fakedata=True)
    #     # Randomises the rotor x,y position
    #     cp_x_pos = randint(0, 199)
    #     cp_y_pos = randint(0, 199)
    #     a.set_pulse(60, [[cp_y_pos], [cp_x_pos]])
    #     update_label_text(cp_x_pos, cp_y_pos, current_ecg_x_pos, current_ecg_y_pos, ecg_count)
    #     tissue_reset = False

    data = a.propagate(ecg=True)
    data = ani_convert(data,
                       shape=a.shape,
                       rp=a.rp,
                       animation_grid=animation_grid)

    # Initial Crosshair drawing
    if ptr1 == 0:
        vLine.setPos(current_ecg_x_pos + 0.5)
        hLine.setPos(current_ecg_y_pos + 0.5)

    # If flag triggered, then start taking measurments.
    if ECG_start_flag:
        process_list.append(copy.deepcopy(data))

    ptr1 += 1

    if ptr1 >= stability_time:
        if not ECG_start_flag:
            ECG_start_flag = True
        if ptr1 % process_length == 0 and ptr1 != stability_time:

            if state == 0:
                # ECG Recording and feature gathering
                sample = rt_ecg_gathering(process_list)
                ecg_count += 1
                # Get deprication warning if this is not done.
                sample = sample.reshape(1, -1)

                y_class_value = y_estimator.predict(sample)[0]
                y_vector = int(y_regress.predict(sample)[0])

                if y_class_value == 1:
                    # Change to state 1 for y axis regression/classification.
                    state = 1
                    del y_short_memory
                    y_short_memory = []
                    x_class_value = x_class.predict(sample)[0]
                    if x_class_value == 1:
                        previousR = "******"
                        # reseting the process.
                        del y_short_memory
                        y_short_memory = []
                        current_ecg_y_pos = randint(0, 199)
                        current_ecg_x_pos = randint(20, 179)
                        state = 0
                        ecg_count = 0

                if y_class_value == 0:
                    y_short_memory.append(current_ecg_y_pos)
                    current_ecg_y_pos -= y_vector
                    if current_ecg_y_pos > 199 or current_ecg_y_pos < 0:
                        current_ecg_y_pos %= 200
                    if current_ecg_y_pos in y_short_memory:
                        previousR = "******"
                        ecg_count = 0
                        current_ecg_x_pos = randint(30, 169)
                        current_ecg_y_pos = randint(0, 199)

            if state == 1:
                # ECG Recording and feature gathering
                sample = rt_ecg_gathering(process_list)
                print sample[441:445]
                ecg_count += 1
                # Get deprication warning if this is not done.
                sample = sample.reshape(1, -1)

                x_class_value = x_class.predict(sample)[0]
                x_vector = int(x_regress.predict(sample)[0])

                if x_class_value == 1:
                    previousR = "******"
                    del x_short_memory
                    x_short_memory = []
                    # reseting the process.
                    current_ecg_y_pos = randint(0, 199)
                    current_ecg_x_pos = randint(20, 179)
                    state = 0
                    ecg_count = 0

                if x_class_value == 0:
                    x_short_memory.append(current_ecg_x_pos)
                    current_ecg_x_pos -= x_vector
                    if current_ecg_x_pos > 199 or current_ecg_x_pos < 0:
                        current_ecg_x_pos %= 200
                    if current_ecg_x_pos in x_short_memory:
                        previousR = '******'
                        ecg_count = 0
                        del x_short_memory
                        x_short_memory = []
                        current_ecg_x_pos = randint(20, 179)
                        current_ecg_y_pos = randint(0, 199)
                        state = 0

            ecg_processing.reset_singlegrid(
                (current_ecg_y_pos, current_ecg_x_pos))
            vLine.setPos(current_ecg_x_pos + 0.5)
            hLine.setPos(current_ecg_y_pos + 0.5)
            del process_list
            process_list = []
            update_label_text(cp_x_pos, cp_y_pos, current_ecg_x_pos,
                              current_ecg_y_pos, ecg_count, previousR)

    # time.sleep(1/120.)  # gives more stable fps.
    img.setImage(data.T)  # puts animation grid on image.

    # Stuff to do with time and fps.
    QtCore.QTimer.singleShot(1, update_data)
    now = ptime.time()
    fps2 = 1.0 / (now - updateTime)
    updateTime = now
    fps = fps * 0.9 + fps2 * 0.1