Beispiel #1
0
def test():
    model = ModelFlow_stride(2, 3, opt.start_channel).cuda()
    transform = SpatialTransform().cuda()

    model.load_state_dict(torch.load(opt.modelpath))
    model.eval()
    transform.eval()

    grid = generate_grid(imgshape)
    grid = Variable(torch.from_numpy(np.reshape(grid, (1, ) +
                                                grid.shape))).cuda().float()

    start = timeit.default_timer()

    A = Variable(torch.from_numpy(load_5D(opt.fixed))).cuda().float()
    B = Variable(torch.from_numpy(load_5D(opt.moving))).cuda().float()
    start2 = timeit.default_timer()
    print('Time for loading data: ', start2 - start)
    pred = model(A, B)
    F_AB = pred.permute(0, 2, 3, 4, 1).data.cpu().numpy()[0, :, :, :, :]
    F_AB = F_AB.astype(np.float32) * range_flow
    warped_A = transform(A,
                         pred.permute(0, 2, 3, 4, 1) * range_flow,
                         grid).data.cpu().numpy()[0, 0, :, :, :]
    start3 = timeit.default_timer()
    print('Time for registration: ', start3 - start2)

    warped_F_BA = transform(-pred,
                            pred.permute(0, 2, 3, 4, 1) * range_flow,
                            grid).permute(0, 2, 3, 4,
                                          1).data.cpu().numpy()[0, :, :, :, :]
    warped_F_BA = warped_F_BA.astype(np.float32) * range_flow

    start4 = timeit.default_timer()
    print('Time for generating inverse flow: ', start4 - start3)

    save_flow(F_AB, savepath + '/flow_A_B.nii.gz')
    save_flow(warped_F_BA, savepath + '/inverse_flow_B_A.nii.gz')
    save_img(warped_A, savepath + '/warped_A.nii.gz')

    start5 = timeit.default_timer()
    print('Time for saving results: ', start5 - start4)
    del pred

    pred = model(B, A)
    F_BA = pred.permute(0, 2, 3, 4, 1).data.cpu().numpy()[0, :, :, :, :]
    F_BA = F_BA.astype(np.float32) * range_flow
    warped_B = transform(B,
                         pred.permute(0, 2, 3, 4, 1) * range_flow,
                         grid).data.cpu().numpy()[0, 0, :, :, :]
    warped_F_AB = transform(-pred,
                            pred.permute(0, 2, 3, 4, 1) * range_flow,
                            grid).permute(0, 2, 3, 4,
                                          1).data.cpu().numpy()[0, :, :, :, :]
    warped_F_AB = warped_F_AB.astype(np.float32) * range_flow
    save_flow(F_BA, savepath + '/flow_B_A.nii.gz')
    save_flow(warped_F_AB, savepath + '/inverse_flow_A_B.nii.gz')
    save_img(warped_B, savepath + '/warped_B.nii.gz')
Beispiel #2
0
def test():
    device = torch.device("cuda:6")
    model = ModelFlow_stride(2, 3, opt.start_channel).cuda(device)
    # model =ModelFlow_stride(2,3,opt.start_channel).cpu()
    # transform = SpatialTransform().cpu()

    transform = SpatialTransform().cuda(device)
    # model.load_state_dict(torch.load(opt.modelpath))
    # model.load_state_dict(torch.load(opt.modelpath, map_location=torch.device('cpu')))
    model.load_state_dict(torch.load(opt.modelpath, map_location=device))

    model.eval()
    transform.eval()
    grid = generate_grid(imgshape)
    grid = Variable(torch.from_numpy(np.reshape(
        grid, (1, ) + grid.shape))).cuda(device).float()
    # grid = Variable(torch.from_numpy(np.reshape(grid, (1,) + grid.shape))).cpu().float()

    start = timeit.default_timer()
    A = sitk.GetArrayFromImage(sitk.ReadImage(opt.fixed, sitk.sitkFloat32))
    B = sitk.GetArrayFromImage(sitk.ReadImage(opt.moving, sitk.sitkFloat32))

    #A = Variable(torch.from_numpy(A)).cuda(device).float()
    #B = Variable(torch.from_numpy(B)).cuda(device).float()

    # A, B = padding(A,B)
    #A = load_5D(A).cuda(device).float()
    #B = load_5D(B).cuda(device).float()

    A = load_5D(A)
    B = load_5D(B)

    A = Variable(torch.from_numpy(A)).cuda(device).float()
    B = Variable(torch.from_numpy(B)).cuda(device).float()

    #A = Variable(torch.from_numpy( load_5D(opt.fixed))).cuda(device).float()
    #B = Variable(torch.from_numpy( load_5D(opt.moving))).cuda(device).float()
    start2 = timeit.default_timer()
    print('Time for loading data: ', start2 - start)
    pred = model(A, B)
    F_AB = pred.permute(0, 2, 3, 4, 1).data.cpu().numpy()[0, :, :, :, :]
    #F_AB = pred.permute(0,2,3,4,1).data.cuda(device).numpy()[0, :, :, :, :]

    F_AB = F_AB.astype(np.float32) * range_flow
    warped_A = transform(A,
                         pred.permute(0, 2, 3, 4, 1) * range_flow,
                         grid).data.cpu().numpy()[0, 0, :, :, :]
    #warped_A = transform(A,pred.permute(0,2,3,4,1)*range_flow,grid).data.cuda(device).numpy()[0, 0, :, :, :]
    start3 = timeit.default_timer()
    print('Time for registration: ', start3 - start2)
    warped_F_BA = transform(-pred,
                            pred.permute(0, 2, 3, 4, 1) * range_flow,
                            grid).permute(0, 2, 3, 4,
                                          1).data.cpu().numpy()[0, :, :, :, :]
    #warped_F_BA = transform(-pred,pred.permute(0,2,3,4,1)*range_flow,grid).permute(0,2,3,4,1).data.cuda(device).numpy()[0, :, :, :, :]
    warped_F_BA = warped_F_BA.astype(np.float32) * range_flow
    start4 = timeit.default_timer()
    print('Time for generating inverse flow: ', start4 - start3)
    save_flow(F_AB, savepath + '/flow_A_B.nii.gz')
    save_flow(warped_F_BA, savepath + '/inverse_flow_B_A.nii.gz')
    save_img(warped_A, savepath + '/warped_A.nii.gz')
    start5 = timeit.default_timer()
    print('Time for saving results: ', start5 - start4)
    del pred
    pred = model(B, A)
    F_BA = pred.permute(0, 2, 3, 4, 1).data.cpu().numpy()[0, :, :, :, :]
    #F_BA = pred.permute(0,2,3,4,1).data.cuda(device).numpy()[0, :, :, :, :]
    F_BA = F_BA.astype(np.float32) * range_flow
    warped_B = transform(B,
                         pred.permute(0, 2, 3, 4, 1) * range_flow,
                         grid).data.cpu().numpy()[0, 0, :, :, :]
    #warped_B = transform(B,pred.permute(0,2,3,4,1)*range_flow,grid).data.cuda(device).numpy()[0, 0, :, :, :]
    warped_F_AB = transform(-pred,
                            pred.permute(0, 2, 3, 4, 1) * range_flow,
                            grid).permute(0, 2, 3, 4,
                                          1).data.cpu().numpy()[0, :, :, :, :]
    #warped_F_AB = transform(-pred,pred.permute(0,2,3,4,1)*range_flow,grid).permute(0,2,3,4,1).data.cuda(device).numpy()[0, :, :, :, :]
    warped_F_AB = warped_F_AB.astype(np.float32) * range_flow
    save_flow(F_BA, savepath + '/flow_B_A.nii.gz')
    save_flow(warped_F_AB, savepath + '/inverse_flow_A_B.nii.gz')
    save_img(warped_B, savepath + '/warped_B.nii.gz')