def testPlottingDataNotShow(self): m = GPy.models.SparseGPRegression(self.X, self.Y) p = PredictionModelSparse(m) p.plot_data() fig, ax1 = plt.subplots() p.plot(plot_training_data=False, ax=ax1) ax1.set_ylim(0, 1) ax1.set_xlim(-2, 2) #i1 = StringIO() #fig.savefig(i1, format='svg') #i1.seek(0) fig, ax2 = plt.subplots() p.plot(plot_training_data=True, ax=ax2) ax2.set_ylim(0, 1) ax2.set_xlim(-2, 2) #i2 = StringIO() #fig.savefig(i2, format='svg') #i2.seek(0) cm(fl(ax1), fl(ax2)) m = GPy.models.GPRegression(self.X, self.Y) p = PredictionModel(m) p.plot_data() fig, ax1 = plt.subplots() p.plot(plot_training_data=False, ax=ax1) ax1.set_ylim(0, 1) ax1.set_xlim(-2, 2) #i1 = StringIO() #fig.savefig(i1, format='svg') #i1.seek(0) fig, ax2 = plt.subplots() p.plot(plot_training_data=True, ax=ax2) ax2.set_ylim(0, 1) ax2.set_xlim(-2, 2) #i2 = StringIO() #fig.savefig(i2, format='svg') #i2.seek(0) cm(fl(ax1), fl(ax2))
def testPlottingSparseClass(self): m = GPy.models.SparseGPClassification(self.X, self.Y < 0) p = PredictionModelSparse(m) fig, ax1 = plt.subplots() m.plot(plot_training_data=False, ax=ax1) ax1.set_ylim(0, 1) ax1.set_xlim(-2, 2) #i1 = StringIO() #fig.savefig(i1, format='svg') #i1.seek(0) fig, ax2 = plt.subplots() p.plot(plot_training_data=False, ax=ax2) ax2.set_ylim(0, 1) ax2.set_xlim(-2, 2) #i2 = StringIO() #fig.savefig(i2, format='svg') #i2.seek(0) #self.assertEqual(i1.read(), i2.read()) cm(fl(ax1), fl(ax2))