Beispiel #1
0
def make_att_resp(filt1,
                  filt2,
                  model,
                  quenched,
                  K,
                  mgs,
                  tag,
                  COR,
                  ncor,
                  qcor,
                  fcor,
                  n_trial=1):

    P = COR[0]
    CNS = COR[1]
    C1 = COR[2]
    C2 = COR[3]

    NCNS = ncor[0]
    NC1 = ncor[1]
    NC2 = ncor[2]

    QCNS = qcor[0]
    QC1 = qcor[1]
    QC2 = qcor[2]

    FCNS = fcor[0]
    FC1 = fcor[1]
    FC2 = fcor[2]

    fullcor = ncor[3]
    fullqcor = qcor[3]

    print(CNS.shape)
    print(C1.shape)

    #make sure everything is the right type
    assert model in ("ours", "coen_cagli")
    assert quenched in (True, False)
    assert type(ncor) == list

    GV = []
    GVnn = []

    #run it for each value of k

    SP = []
    SPnn = []

    for k in K:
        print(k)
        GV.append(
            MGSM.MGSM_att_g(filt1, filt2, [CNS, C1, C2],
                            [NCNS * (k * k), NC1 * (k * k), NC2 * (k * k)],
                            [QCNS, QC1, QC2], [FCNS, FC1, FC2], P))
        GVnn.append(MGSM.MGSM_gnn(filt2, [CNS, C1, C2], P))

        SP.append(
            MGSM.get_att_CC_seg_weight(filt1, filt2, CNS, C1, C2,
                                       NCNS * (k * k), NC1 * (k * k),
                                       NC2 * (k * k), QCNS, QC1, QC2, FCNS,
                                       FC1, FC2, P))
        SPnn.append(MGSM.get_CC_seg_weight(filt2, CNS, C1, C2, P))

    GV = np.concatenate(GV)
    GVnn = np.concatenate(GVnn)

    SP = np.concatenate(SP)
    SPnn = np.concatenate(SPnn)

    np.savetxt(tag + "_noisy.csv", GV)
    np.savetxt(tag + "_clean.csv", GVnn)

    np.savetxt(tag + "_SP_noisy.csv", SP)
    np.savetxt(tag + "_SP_clean.csv", SPnn)

    return GV, GVnn
Beispiel #2
0
def make_resp(filt, model, quenched, K, mgs, tag, COR, ncor, n_trial=1):

    P = COR[0]
    CNS = COR[1]
    C1 = COR[2]
    C2 = COR[3]

    NCNS = ncor[0]
    NC1 = ncor[1]
    NC2 = ncor[2]

    fullcor = ncor[3]

    print(CNS.shape)
    print(C1.shape)

    #make sure everything is the right type
    assert model in ("ours", "coen_cagli")
    assert quenched in (True, False)
    assert type(ncor) == list

    GV = []
    GVnn = []

    #generate samples for each filter set
    if quenched:
        nftemp = np.tile(filt, [n_trial, 1, 1])

        noise = np.reshape(
            np.random.multivariate_normal(np.zeros(np.prod(nftemp.shape[1:])),
                                          fullcor, n_trial * filt.shape[0]),
            tuple([n_trial * filt.shape[0]]) + filt.shape[1:])
        nftemp += noise
    else:
        nftemp = filt

    #run it for each value of k

    SP = []
    SPnn = []

    for k in K:
        print(k)
        print(nftemp.shape)
        GV.append(
            MGSM.MGSM_g(nftemp, [CNS, C1, C2],
                        [NCNS * (k * k), NC1 * (k * k), NC2 * (k * k)], P))
        GVnn.append(MGSM.MGSM_gnn(filt, [CNS, C1, C2], P))
        if model == "ours":
            SP.append(
                MGSM.get_noisy_seg_weight(filt, CNS, C1, C2, NCNS * (k * k),
                                          NC1 * (k * k), NC2 * (k * k), P))
            SPnn.append(MGSM.get_seg_weight(filt, CNS, C1, C2, P))
        elif model == "coen_cagli":
            SP.append(
                MGSM.get_noisy_CC_seg_weight(filt, CNS, C1, C2, NCNS * (k * k),
                                             NC1 * (k * k), NC2 * (k * k), P))
            SPnn.append(MGSM.get_CC_seg_weight(filt, CNS, C1, C2, P))

    GV = np.concatenate(GV)
    GVnn = np.concatenate(GVnn)

    SP = np.concatenate(SP)
    SPnn = np.concatenate(SPnn)

    np.savetxt(tag + "_noisy.csv", GV)
    np.savetxt(tag + "_clean.csv", GVnn)

    np.savetxt(tag + "_SP_noisy.csv", SP)
    np.savetxt(tag + "_SP_clean.csv", SPnn)

    return GV, GVnn