m = lambda x: model.predict(x)
    sd2 = lambda x: model.predict(x, eval_MSE=True)[1]

    m_dx = lambda x: model.gradient(x)[0]
    sd2_dx = lambda x: model.gradient(x)[1]
    
    if 1 < 2:
        fig0, (ax0, ax1, ax2) = plt.subplots(1, 3, sharey=False, sharex=False,
                                  figsize=(fig_width, fig_height),
                                  subplot_kw={'aspect': 'equal'}, dpi=100)
                                  
        gs1 = gridspec.GridSpec(1, 3)
        gs1.update(wspace=0.025, hspace=0.05) # set the spacing between axes. 
    
        plot_contour_gradient(ax0, fitness, None, x_lb, x_ub, title='Noisy function',
                              n_level=20, n_per_axis=200)
        
        plot_contour_gradient(ax1, m, m_dx, x_lb, x_ub, title='GPR estimation',
                              n_level=20, n_per_axis=200)
                              
        plot_contour_gradient(ax2, sd2, sd2_dx, x_lb, x_ub, title='GPR variance',
                              n_level=20, n_per_axis=200)
        plt.tight_layout()
    
    fig1, ax3 = plt.subplots(1, 1, figsize=(fig_width, fig_height),
                             subplot_kw={'aspect': 'equal'}, dpi=100)
                             
    plot_contour_gradient(ax3, infill, infill_dx, x_lb, x_ub, title='Infill-Criterion',
                          is_log=True, n_level=50, n_per_axis=250)

    plt.tight_layout()
Beispiel #2
0
        f = EI(model)

        def __(x):
            _, dx = f(x, dx=True)
            return dx

        return __

    f = EI(model)
    dx = grad(model)

    fig0, ax0 = plt.subplots(1,
                             1,
                             sharey=True,
                             sharex=False,
                             figsize=(fig_width, fig_height),
                             subplot_kw={'aspect': 'auto'},
                             dpi=100)

    plot_contour_gradient(ax0,
                          f,
                          dx,
                          x_lb,
                          x_ub,
                          title='Function',
                          n_level=15,
                          n_per_axis=120)

    plt.tight_layout()
    plt.show()