def build_finetune_functions(self, sValidFeatMask, sTestFeatMask,
                                 batch_size, learning_rate):
        '''Generates a function `train` that implements one step of
        finetuning, a function `validate` that computes the error on a
        batch from the validation set, and a function `test` that
        computes the error on a batch from the testing set

        :type datasets: list of pairs of theano.tensor.TensorType
        :param datasets: It is a list that contain all the datasets;
                        the has to contain three pairs, `train`,
                        `valid`, `test` in this order, where each pair
                        is formed of two Theano variables, one for the
                        datapoints, the other for the labels
        :type batch_size: int
        :param batch_size: size of a minibatch
        :type learning_rate: float
        :param learning_rate: learning rate used during finetune stage

        '''

        #(train_set_x, train_set_y) = datasets[0]
        #(valid_set_x, valid_set_y) = datasets[1]
        #(test_set_x, test_set_y) = datasets[2]
        def shared_dataset(data_xy, borrow=True):
            data_x, data_y = data_xy
            shared_x = theano.shared(numpy.asarray(data_x,
                                                   dtype=theano.config.floatX),
                                     borrow=borrow)
            shared_y = theano.shared(
                numpy.asarray(data_y, dtype='int32'),  #theano.config.floatX),
                borrow=borrow)
            return shared_x, shared_y  #T.cast(shared_y, 'int32')

        with open(sValidFeatMask, 'r') as fFeatMask:
            lLines = fFeatMask.read().splitlines()
            lValidFeatMaskFiles = [tuple(line.split()) for line in lLines]

        with open(sTestFeatMask, 'r') as fFeatMask:
            lLines = fFeatMask.read().splitlines()
            lTestFeatMaskFiles = [tuple(line.split()) for line in lLines]
        print('Loading Validation Data.....')
        valid_set_x, valid_set_y = shared_dataset(
            GetXy(lValidFeatMaskFiles, iAttributeIndx, iNumFrames, iFeatSize,
                  True))
        print('Done')
        print('Loading Testing Data.....')
        test_set_x, test_set_y = shared_dataset(
            GetXy(lTestFeatMaskFiles, iAttributeIndx, iNumFrames, iFeatSize,
                  True))
        print('Done')

        # compute number of minibatches for training, validation and testing
        n_valid_samples = valid_set_x.get_value(borrow=True).shape[0]
        n_valid_batches = n_valid_samples / batch_size
        n_test_samples = test_set_x.get_value(borrow=True).shape[0]
        n_test_batches = (n_test_samples /
                          batch_size) + (n_test_samples % batch_size > 0)

        print((
            'Number of Validation Samples = %i , Number of Validation batches = %i , Number of Test Samples = %i , Number of Test batches = %i'
        ) % (n_valid_samples, n_valid_batches, n_test_samples, n_test_batches))

        index = T.lscalar('index')  # index to a [mini]batch
        Alr = T.scalar('Alr')  # learning rate to use
        X = T.matrix('x')  # the data is presented as rasterized images
        y = T.ivector('y')
        # compute the gradients with respect to the model parameters
        gparams = T.grad(self.finetune_cost, self.params)

        # compute list of fine-tuning updates
        updates = []
        for param, gparam in zip(self.params, gparams):
            updates.append((param, param - gparam * Alr))

        train_fn = theano.function(inputs=[X, y, Alr],
                                   outputs=self.finetune_cost,
                                   updates=updates,
                                   givens={
                                       self.x: X,
                                       self.y: y
                                   })

        test_score_i = theano.function(
            [index], [self.errors, self.y_pred],
            givens={
                self.x:
                test_set_x[index * batch_size:(index + 1) * batch_size],
                self.y: test_set_y[index * batch_size:(index + 1) * batch_size]
            })

        valid_score_i = theano.function(
            [index],
            self.errors,
            givens={
                self.x:
                valid_set_x[index * batch_size:(index + 1) * batch_size],
                self.y:
                valid_set_y[index * batch_size:(index + 1) * batch_size]
            })

        #yPred = theano.function([self.x],self.y_pred)
        # Create a function that scans the entire validation set
        def valid_score():
            return [valid_score_i(i) for i in xrange(n_valid_batches)]

        # Create a function that scans the entire test set
        def test_score():
            return [test_score_i(i)[0] for i in xrange(n_test_batches)]

        def yPred():
            yP = numpy.asarray([])
            for i in xrange(n_test_batches):
                yP = numpy.concatenate((yP, test_score_i(i)[1]))
            return yP

        def GetRefY():
            return test_set_y.get_value(borrow=True)

        return train_fn, valid_score, test_score, yPred, GetRefY
def test_DBN(finetune_lr=lr,
             pretraining_epochs=100,
             pretrain_lr=0.0025,
             k=2,
             training_epochs=NOfepoch,
             sValidList=sValidList,
             sTestingList=sTestingList,
             batch_size=batchSize):
    """
    Demonstrates how to train and test a Deep Belief Network.

    This is demonstrated on MNIST.

    :type learning_rate: float
    :param learning_rate: learning rate used in the finetune stage
    :type pretraining_epochs: int
    :param pretraining_epochs: number of epoch to do pretraining
    :type pretrain_lr: float
    :param pretrain_lr: learning rate to be used during pre-training
    :type k: int
    :param k: number of Gibbs steps in CD/PCD
    :type training_epochs: int
    :param training_epochs: maximal number of iterations ot run the optimizer
    :type dataset: string
    :param dataset: path the the pickled dataset
    :type batch_size: int
    :param batch_size: the size of a minibatch
    """
    # compute number of minibatches for training, validation and testing
    with open(sTrainingList, 'r') as fFeatMask:
        lLines = fFeatMask.read().splitlines()
        lFeatMaskFiles = [tuple(line.split()) for line in lLines]
    n_train_chuncks = int(
        math.ceil(len(lFeatMaskFiles) / float(iNumFiles)
                  ))  #train_set_x.get_value(borrow=True).shape[0] / batch_size

    # numpy random generator
    numpy_rng = numpy.random.RandomState(123)
    print('... building the model')
    # construct the Deep Belief Network
    dbn = DBN(numpy_rng=numpy_rng,
              n_ins=n_inp,
              hidden_layers_sizes=[n_hus for i in range(n_hls)],
              n_outs=n_out)

    #########################
    # PRETRAINING THE MODEL #
    #########################
    #print ('... getting the pretraining functions')
    #pretraining_fns = dbn.pretraining_functions(train_set_x=train_set_x,
    #                                            batch_size=batch_size,
    #                                            k=k)

    #print ('... pre-training the model')
    #start_time = time.clock()
    ## Pre-train layer-wise
    #for i in xrange(dbn.n_layers):
    #    # go through pretraining epochs
    #    for epoch in xrange(pretraining_epochs):
    #        # go through the training set
    #        c = []
    #        for batch_index in xrange(n_train_batches):
    #            c.append(pretraining_fns[i](index=batch_index,
    #                                        lr=pretrain_lr))
    #        print ('Pre-training layer %i, epoch %d, cost ' % (i, epoch))
    #        print (numpy.mean(c))
    #
    #   end_time = time.clock()
    #   print (('The pretraining code for file ' +
    #                         os.path.split(__file__)[1] +
    #                         ' ran for %.2fm' % ((end_time - start_time) / 60.)))

    ########################
    # FINETUNING THE MODEL #
    ########################

    # get the training, validation and testing function for the model
    print('... getting the finetuning functions')
    train_fn, validate_model, test_model, gety_pred, get_y = dbn.build_finetune_functions(
        sValidFeatMask=sValidList,
        sTestFeatMask=sTestingList,
        batch_size=batch_size,
        learning_rate=finetune_lr)

    print('... finetunning the model')
    # early-stopping parameters
    #patience = 4 * n_train_batches  # look as this many examples regardless
    #patience_increase = 2.    # wait this much longer when a new best is
    # found
    #improvement_threshold = 0.995  # a relative improvement of this much is
    # considered significant
    #validation_frequency = min(n_train_batches, patience / 2)
    # go through this many
    # minibatche before checking the network
    # on the validation set; in this case we
    # check every epoch
    print('Number of Training Chunks = ', n_train_chuncks)
    y = get_y()
    best_params = []
    ybest = numpy.asarray([])
    best_validation_loss = numpy.inf
    prev_validation_loss = 200
    test_score = 0.
    start_time = time.clock()
    Alrc = 0.1
    AlrE = 0.00001
    done_looping = False
    epoch = 0
    epochC = 0
    iter = 0
    for param in dbn.params:
        best_params.append(param.get_value())

    while (epoch < training_epochs) and (not done_looping):
        epoch = epoch + 1
        epochC = epochC + 1
        #for minibatch_index in xrange(n_train_batches):
        for chunck_index in xrange(n_train_chuncks):
            #print n_train_batches, epoch, minibatch_index
            #minibatch_avg_cost = train_fn(minibatch_index,Alrc)
            lCurFeatMask = lFeatMaskFiles[chunck_index *
                                          iNumFiles:(chunck_index + 1) *
                                          iNumFiles]
            arCur_X, vCur_y = GetXy(lCurFeatMask, iAttributeIndx, iNumFrames,
                                    iFeatSize, True)
            print(('Chunk Index = %i , Number of Samples = %i') %
                  (chunck_index, arCur_X.shape[0]))
            #minibatch_avg_cost = train_fn(train_set_x_NS[minibatch_index*batch_size:(minibatch_index+1)*batch_size],train_set_y_NS[minibatch_index*batch_size:(minibatch_index+1)*batch_size],Alrc)
            n_curTrain_batches = int(
                math.ceil(arCur_X.shape[0] / float(batch_size)))
            for minibatch_index in xrange(n_curTrain_batches):
                minibatch_avg_cost = train_fn(
                    arCur_X[minibatch_index *
                            batch_size:(minibatch_index + 1) * batch_size],
                    vCur_y[minibatch_index * batch_size:(minibatch_index + 1) *
                           batch_size], Alrc)
                #iter = (epoch - 1) * n_train_chuncks + chunck_index * minibatch_index
        validation_losses = validate_model()
        this_validation_loss = numpy.mean(validation_losses)
        lossratio = (this_validation_loss -
                     prev_validation_loss) / (prev_validation_loss + 1)
        print(lossratio)
        print('epoch %i, validation error %f, lr %f %%' % \
             (epoch,this_validation_loss * 100., Alrc))

        # if we got the best validation score until now
        #if this_validation_loss < best_validation_loss:
        if lossratio <= 0.0:
            #print '*******************1**************'
            #print dbn.params[0].get_value()
            for i in range(len(dbn.params)):
                best_params[i] = dbn.params[i].get_value()

            # save best validation score and iteration number
            best_validation_loss = this_validation_loss
            prev_validation_loss = this_validation_loss
            best_iter = iter

            # test it on the test set
            test_losses = test_model()
            test_score = numpy.mean(test_losses)
            yP = gety_pred()
            acc = accuracy_score(y, yP)
            conf_matrix = confusion_matrix(y, yP)
            conf_matrix_norm = conf_matrix / numpy.sum(
                conf_matrix, axis=1, dtype='float', keepdims=True)
            acc_str = ' '.join([
                str(conf_matrix_norm[i, i])
                for i in range(conf_matrix_norm.shape[0])
            ])
            conf_str = ' '.join(conf_matrix.flatten().astype('str'))
            ybest = yP
            print((
                '     epoch %i, test error of best model %f, acc = %s , conf = %s %%'
            ) % (epoch, test_score * 100., acc_str, conf_str))
        else:
            if Alrc <= AlrE:
                done_looping = True
                break
            elif epochC > 20:
                Alrc = Alrc / 2
                for param, best_param in zip(dbn.params, best_params):
                    param.set_value(best_param)
                epochC = 0
    end_time = time.clock()
    print(('Optimization complete with best validation score of %f %%,'
           'with test performance %f %%') %
          (best_validation_loss * 100., test_score * 100.))
    if not os.path.isdir('Temp'):
        os.makedirs('Temp')
    fbestParam = gzip.open(
        'Temp/Bestparam_' + str(iAttributeIndx) + '_' + str(iNumFrames) + '_' +
        str(n_hls) + '_' + str(n_hus) + '_' + str(n_out) + '_' +
        str(iFeatSize) + '.pkl.gz', 'wb')
    fbestP = open(
        'Temp/Bestp_' + str(iAttributeIndx) + '_' + str(iNumFrames) + '_' +
        str(n_hls) + '_' + str(n_hus) + '_' + str(n_out) + '_' +
        str(iFeatSize) + '.txt', 'w')
    numpy.savetxt(fbestP, ybest)
    fbestP.close()
    cPickle.dump(best_params, fbestParam)
    fbestParam.close()
    OF = open(outFile, 'a')
    print(iAttributeIndx,
          iNumFrames,
          lr,
          n_hls,
          n_hus,
          n_out,
          batchSize,
          NOfepoch,
          n_inp,
          outFile,
          test_score * 100.,
          acc_str,
          conf_str,
          file=OF)

    OF.close()
Beispiel #3
0
import sys
from GetDataFromList import GetXy
with open(sys.argv[1]) as fIn:
    lLines = fIn.read().splitlines()
lFeatMask = [tuple(sLine.split()) for sLine in lLines]
a,b,c = GetXy(lFeatMask[:300],int(sys.argv[2]),9,78,True)
print(c)