Beispiel #1
0
fig = plt.figure()
bottom = 0.1
top = 2*KSEconomy.kSS
x = np.linspace(bottom,top,1000,endpoint=True)
print(KSEconomy.AFunc)
y0 = KSEconomy.AFunc[0](x)
y1 = KSEconomy.AFunc[1](x)
plt.plot(x,y0)
plt.plot(x,y1)
plt.xlim([bottom, top])
make_figs('aggregate_savings', True, False)
# remark.show('aggregate_savings')


print('Consumption function at each aggregate market resources gridpoint (in general equilibrium):')
KSAgent.unpackcFunc()
m_grid = np.linspace(0,10,200)
KSAgent.unpackcFunc()
for M in KSAgent.Mgrid:
    c_at_this_M = KSAgent.solution[0].cFunc[0](m_grid,M*np.ones_like(m_grid)) #Have two consumption functions, check this
    plt.plot(m_grid,c_at_this_M)
make_figs('consumption_function', True, False)

# remark.show('consumption_function')

print('Savings at each individual market resources gridpoint (in general equilibrium):')
fig = plt.figure()
KSAgent.unpackcFunc()
m_grid = np.linspace(0,10,200)
KSAgent.unpackcFunc()
for M in KSAgent.Mgrid:
Beispiel #2
0
    # Solve the microeconomic model for the Markov aggregate shocks example type (and display results)
    t_start = process_time()
    AggShockMrkvExample.solve()
    t_end = process_time()
    print(
        "Solving an aggregate shocks Markov consumer took "
        + mystr(t_end - t_start)
        + " seconds."
    )

    print(
        "Consumption function at each aggregate market \
            resources-to-labor ratio gridpoint (for each macro state):"
    )
    m_grid = np.linspace(0, 10, 200)
    AggShockMrkvExample.unpackcFunc()
    for i in range(2):
        for M in AggShockMrkvExample.Mgrid.tolist():
            mMin = AggShockMrkvExample.solution[0].mNrmMin[i](M)
            c_at_this_M = AggShockMrkvExample.cFunc[0][i](
                m_grid + mMin, M * np.ones_like(m_grid)
            )
            plt.plot(m_grid + mMin, c_at_this_M)
        plt.ylim(0.0, None)
        plt.show()

# %%
if solve_markov_market:
    # Solve the "macroeconomic" model by searching for a "fixed point dynamic rule"
    t_start = process_time()
    print("Now solving a two-state Markov economy.  This should take a few minutes...")