base = '/data/alstottj/Langley/' from numpy import asarray, isnan, median, unique from scipy.stats import skew, kruskal, ks_2samp #from rpy2 import robjects from rpy2.robjects.packages import importr from rpy2.robjects.vectors import FloatVector stats = importr('stats') import database as db from Helix_database import Session, database_url session = Session() db.create_database(database_url) import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages plots = PdfPages(base+'Langley_distributions.pdf') import powerlaw dependents = ['Number_of_Children', 'Parent_Child_Registration_Interval_Corrected', 'Distance_from_Parent', 'Has_Children', 'Has_Parent'] independents = ['Age', 'Gender', 'Relationship_with_Parent', 'Heard_Through_Medium', 'Same_Age_as_Parent',\ 'Same_City_as_Parent', 'Same_Country_as_Parent', 'Same_Gender_as_Parent', 'Same_Relationship_to_Parent_as_They_Had_to_Their_Parent',\ 'Heard_Through_Same_Medium_as_Parent', 'Has_Parent'] #robjects.r("data<-read.table('%s')"%(base+'LangleyRtable')) #robjects.r("attach(data)") for d in dependents: print d
from avalanchetoolbox import avalanches from avalanchetoolbox import database as db import h5py import os #import BCNI_database as db #cluster=False from Helix_database import Session, database_url session = Session() cluster=True analyses_directory = '/home/alstottj/biowulf/analyses/' swarms_directory = '/home/alstottj/biowulf/swarms/' python_location= '/usr/local/Python/2.7.2/bin/python' time_scales = [1, 2, 3, 4, 5, 6, 7, 8, 16, 32] threshold_mode = 'SD' threshold_levels = [3] threshold_directions = ['both'] #bins = [1] #percentiles =[99] given_xmin_xmax = [(None, None), (1, None), (1, 'channels'), (1,102)] event_signals = ['amplitude', 'displacement'] event_detections = ['local_extrema', 'local', 'excursion_extrema'] cascade_methods = ['grid'] spatial_samples = [('all', 'all')] temporal_samples = [('all', 'all')] visits = [2, 3] tasks = ['rest']
base = '/data/alstottj/Langley/' import pickle G = pickle.load(open(base+'Network_parents.p')) import database as db from Helix_database import Session, database_url session = Session() db.create_database(database_url) for n_id in G.node: n = G.node[n_id] p = db.LangleyParticipant() p.node_id = n['node_id'] p.Age = n['age'] p.City = n['city'] p.Country = n['country'] p.Depth_in_Invite_Chain = n['depth'] p.Gender = n['gender'] p.Number_of_Children = n['sigma'] p.Has_Children = (G.out_degree()[n_id]>0) p.Relationship_with_Parent = n['source_from'] p.Heard_Through_Medium = n['source_through'] p.Join_Time = n['join_time'] p.Latitude = n['lat'] p.Longitude = n['lng'] p.Has_Parent = False if 'parent_id' in n.keys(): p.Has_Parent = True p.parent_id = n['parent_id'] p.Parent_Child_Registration_Interval = n['wait_time']